Robotics 30
☆ SpaceTimePilot: Generative Rendering of Dynamic Scenes Across Space and Time
Zhening Huang, Hyeonho Jeong, Xuelin Chen, Yulia Gryaditskaya, Tuanfeng Y. Wang, Joan Lasenby, Chun-Hao Huang
We present SpaceTimePilot, a video diffusion model that disentangles space and time for controllable generative rendering. Given a monocular video, SpaceTimePilot can independently alter the camera viewpoint and the motion sequence within the generative process, re-rendering the scene for continuous and arbitrary exploration across space and time. To achieve this, we introduce an effective animation time-embedding mechanism in the diffusion process, allowing explicit control of the output video's motion sequence with respect to that of the source video. As no datasets provide paired videos of the same dynamic scene with continuous temporal variations, we propose a simple yet effective temporal-warping training scheme that repurposes existing multi-view datasets to mimic temporal differences. This strategy effectively supervises the model to learn temporal control and achieve robust space-time disentanglement. To further enhance the precision of dual control, we introduce two additional components: an improved camera-conditioning mechanism that allows altering the camera from the first frame, and CamxTime, the first synthetic space-and-time full-coverage rendering dataset that provides fully free space-time video trajectories within a scene. Joint training on the temporal-warping scheme and the CamxTime dataset yields more precise temporal control. We evaluate SpaceTimePilot on both real-world and synthetic data, demonstrating clear space-time disentanglement and strong results compared to prior work. Project page: https://zheninghuang.github.io/Space-Time-Pilot/ Code: https://github.com/ZheningHuang/spacetimepilot
comment: Project page: https://zheninghuang.github.io/Space-Time-Pilot/ Code: https://github.com/ZheningHuang/spacetimepilot
☆ Coordinated Humanoid Manipulation with Choice Policies
Humanoid robots hold great promise for operating in human-centric environments, yet achieving robust whole-body coordination across the head, hands, and legs remains a major challenge. We present a system that combines a modular teleoperation interface with a scalable learning framework to address this problem. Our teleoperation design decomposes humanoid control into intuitive submodules, which include hand-eye coordination, grasp primitives, arm end-effector tracking, and locomotion. This modularity allows us to collect high-quality demonstrations efficiently. Building on this, we introduce Choice Policy, an imitation learning approach that generates multiple candidate actions and learns to score them. This architecture enables both fast inference and effective modeling of multimodal behaviors. We validate our approach on two real-world tasks: dishwasher loading and whole-body loco-manipulation for whiteboard wiping. Experiments show that Choice Policy significantly outperforms diffusion policies and standard behavior cloning. Furthermore, our results indicate that hand-eye coordination is critical for success in long-horizon tasks. Our work demonstrates a practical path toward scalable data collection and learning for coordinated humanoid manipulation in unstructured environments.
comment: Code and Website: https://choice-policy.github.io/
☆ DarkEQA: Benchmarking Vision-Language Models for Embodied Question Answering in Low-Light Indoor Environments
Vision Language Models (VLMs) are increasingly adopted as central reasoning modules for embodied agents. Existing benchmarks evaluate their capabilities under ideal, well-lit conditions, yet robust 24/7 operation demands performance under a wide range of visual degradations, including low-light conditions at night or in dark environments--a core necessity that has been largely overlooked. To address this underexplored challenge, we present DarkEQA, an open-source benchmark for evaluating EQA-relevant perceptual primitives under multi-level low-light conditions. DarkEQA isolates the perception bottleneck by evaluating question answering from egocentric observations under controlled degradations, enabling attributable robustness analysis. A key design feature of DarkEQA is its physical fidelity: visual degradations are modeled in linear RAW space, simulating physics-based illumination drop and sensor noise followed by an ISP-inspired rendering pipeline. We demonstrate the utility of DarkEQA by evaluating a wide range of state-of-the-art VLMs and Low-Light Image Enhancement (LLIE) models. Our analysis systematically reveals VLMs' limitations when operating under these challenging visual conditions. Our code and benchmark dataset will be released upon acceptance.
comment: Submitted to IEEE Robotics and Automation Letters (RA-L)
☆ Hierarchical Deformation Planning and Neural Tracking for DLOs in Constrained Environments
Deformable linear objects (DLOs) manipulation presents significant challenges due to DLOs' inherent high-dimensional state space and complex deformation dynamics. The wide-populated obstacles in realistic workspaces further complicate DLO manipulation, necessitating efficient deformation planning and robust deformation tracking. In this work, we propose a novel framework for DLO manipulation in constrained environments. This framework combines hierarchical deformation planning with neural tracking, ensuring reliable performance in both global deformation synthesis and local deformation tracking. Specifically, the deformation planner begins by generating a spatial path set that inherently satisfies the homotopic constraints associated with DLO keypoint paths. Next, a path-set-guided optimization method is applied to synthesize an optimal temporal deformation sequence for the DLO. In manipulation execution, a neural model predictive control approach, leveraging a data-driven deformation model, is designed to accurately track the planned DLO deformation sequence. The effectiveness of the proposed framework is validated in extensive constrained DLO manipulation tasks.
☆ MSACL: Multi-Step Actor-Critic Learning with Lyapunov Certificates for Exponentially Stabilizing Control
Achieving provable stability in model-free reinforcement learning (RL) remains a challenge, particularly in balancing exploration with rigorous safety. This article introduces MSACL, a framework that integrates exponential stability theory with maximum entropy RL through multi-step Lyapunov certificate learning. Unlike methods relying on complex reward engineering, MSACL utilizes off-policy multi-step data to learn Lyapunov certificates satisfying theoretical stability conditions. By introducing Exponential Stability Labels (ESL) and a $λ$-weighted aggregation mechanism, the framework effectively balances the bias-variance trade-off in multi-step learning. Policy optimization is guided by a stability-aware advantage function, ensuring the learned policy promotes rapid Lyapunov descent. We evaluate MSACL across six benchmarks, including stabilization and nonlinear tracking tasks, demonstrating its superiority over state-of-the-art Lyapunov-based RL algorithms. MSACL achieves exponential stability and rapid convergence under simple rewards, while exhibiting significant robustness to uncertainties and generalization to unseen trajectories. Sensitivity analysis establishes the multi-step horizon $n=20$ as a robust default across diverse systems. By linking Lyapunov theory with off-policy actor-critic frameworks, MSACL provides a foundation for verifiably safe learning-based control. Source code and benchmark environments will be made publicly available.
☆ VLN-MME: Diagnosing MLLMs as Language-guided Visual Navigation agents
Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities across a wide range of vision-language tasks. However, their performance as embodied agents, which requires multi-round dialogue spatial reasoning and sequential action prediction, needs further exploration. Our work investigates this potential in the context of Vision-and-Language Navigation (VLN) by introducing a unified and extensible evaluation framework to probe MLLMs as zero-shot agents by bridging traditional navigation datasets into a standardized benchmark, named VLN-MME. We simplify the evaluation with a highly modular and accessible design. This flexibility streamlines experiments, enabling structured comparisons and component-level ablations across diverse MLLM architectures, agent designs, and navigation tasks. Crucially, enabled by our framework, we observe that enhancing our baseline agent with Chain-of-Thought (CoT) reasoning and self-reflection leads to an unexpected performance decrease. This suggests MLLMs exhibit poor context awareness in embodied navigation tasks; although they can follow instructions and structure their output, their 3D spatial reasoning fidelity is low. VLN-MME lays the groundwork for systematic evaluation of general-purpose MLLMs in embodied navigation settings and reveals limitations in their sequential decision-making capabilities. We believe these findings offer crucial guidance for MLLM post-training as embodied agents.
☆ ArtiSG: Functional 3D Scene Graph Construction via Human-demonstrated Articulated Objects Manipulation
Qiuyi Gu, Yuze Sheng, Jincheng Yu, Jiahao Tang, Xiaolong Shan, Zhaoyang Shen, Tinghao Yi, Xiaodan Liang, Xinlei Chen, Yu Wang
3D scene graphs have empowered robots with semantic understanding for navigation and planning, yet they often lack the functional information required for physical manipulation, particularly regarding articulated objects. Existing approaches for inferring articulation mechanisms from static observations are prone to visual ambiguity, while methods that estimate parameters from state changes typically rely on constrained settings such as fixed cameras and unobstructed views. Furthermore, fine-grained functional elements like small handles are frequently missed by general object detectors. To bridge this gap, we present ArtiSG, a framework that constructs functional 3D scene graphs by encoding human demonstrations into structured robotic memory. Our approach leverages a robust articulation data collection pipeline utilizing a portable setup to accurately estimate 6-DoF articulation trajectories and axes even under camera ego-motion. We integrate these kinematic priors into a hierarchical and open-vocabulary graph while utilizing interaction data to discover inconspicuous functional elements missed by visual perception. Extensive real-world experiments demonstrate that ArtiSG significantly outperforms baselines in functional element recall and articulation estimation precision. Moreover, we show that the constructed graph serves as a reliable functional memory that effectively guides robots to perform language-directed manipulation tasks in real-world environments containing diverse articulated objects.
☆ CropTrack: A Tracking with Re-Identification Framework for Precision Agriculture
Multiple-object tracking (MOT) in agricultural environments presents major challenges due to repetitive patterns, similar object appearances, sudden illumination changes, and frequent occlusions. Contemporary trackers in this domain rely on the motion of objects rather than appearance for association. Nevertheless, they struggle to maintain object identities when targets undergo frequent and strong occlusions. The high similarity of object appearances makes integrating appearance-based association nontrivial for agricultural scenarios. To solve this problem we propose CropTrack, a novel MOT framework based on the combination of appearance and motion information. CropTrack integrates a reranking-enhanced appearance association, a one-to-many association with appearance-based conflict resolution strategy, and an exponential moving average prototype feature bank to improve appearance-based association. Evaluated on publicly available agricultural MOT datasets, CropTrack demonstrates consistent identity preservation, outperforming traditional motion-based tracking methods. Compared to the state of the art, CropTrack achieves significant gains in identification F1 and association accuracy scores with a lower number of identity switches.
comment: 8 pages, 5 figures, and 3 tables
☆ Explaining Why Things Go Where They Go: Interpretable Constructs of Human Organizational Preferences
Robotic systems for household object rearrangement often rely on latent preference models inferred from human demonstrations. While effective at prediction, these models offer limited insight into the interpretable factors that guide human decisions. We introduce an explicit formulation of object arrangement preferences along four interpretable constructs: spatial practicality (putting items where they naturally fit best in the space), habitual convenience (making frequently used items easy to reach), semantic coherence (placing items together if they are used for the same task or are contextually related), and commonsense appropriateness (putting things where people would usually expect to find them). To capture these constructs, we designed and validated a self-report questionnaire through a 63-participant online study. Results confirm the psychological distinctiveness of these constructs and their explanatory power across two scenarios (kitchen and living room). We demonstrate the utility of these constructs by integrating them into a Monte Carlo Tree Search (MCTS) planner and show that when guided by participant-derived preferences, our planner can generate reasonable arrangements that closely align with those generated by participants. This work contributes a compact, interpretable formulation of object arrangement preferences and a demonstration of how it can be operationalized for robot planning.
comment: Accepted to the 2026 ACM/IEEE International Conference on Human-Robot Interaction (HRI '26)
☆ Dream2Flow: Bridging Video Generation and Open-World Manipulation with 3D Object Flow
Generative video modeling has emerged as a compelling tool to zero-shot reason about plausible physical interactions for open-world manipulation. Yet, it remains a challenge to translate such human-led motions into the low-level actions demanded by robotic systems. We observe that given an initial image and task instruction, these models excel at synthesizing sensible object motions. Thus, we introduce Dream2Flow, a framework that bridges video generation and robotic control through 3D object flow as an intermediate representation. Our method reconstructs 3D object motions from generated videos and formulates manipulation as object trajectory tracking. By separating the state changes from the actuators that realize those changes, Dream2Flow overcomes the embodiment gap and enables zero-shot guidance from pre-trained video models to manipulate objects of diverse categories-including rigid, articulated, deformable, and granular. Through trajectory optimization or reinforcement learning, Dream2Flow converts reconstructed 3D object flow into executable low-level commands without task-specific demonstrations. Simulation and real-world experiments highlight 3D object flow as a general and scalable interface for adapting video generation models to open-world robotic manipulation. Videos and visualizations are available at https://dream2flow.github.io/.
comment: Project website: https://dream2flow.github.io/
☆ Control of Microrobots with Reinforcement Learning under On-Device Compute Constraints
An important function of autonomous microrobots is the ability to perform robust movement over terrain. This paper explores an edge ML approach to microrobot locomotion, allowing for on-device, lower latency control under compute, memory, and power constraints. This paper explores the locomotion of a sub-centimeter quadrupedal microrobot via reinforcement learning (RL) and deploys the resulting controller on an ultra-small system-on-chip (SoC), SC$μ$M-3C, featuring an ARM Cortex-M0 microcontroller running at 5 MHz. We train a compact FP32 multilayer perceptron (MLP) policy with two hidden layers ($[128, 64]$) in a massively parallel GPU simulation and enhance robustness by utilizing domain randomization over simulation parameters. We then study integer (Int8) quantization (per-tensor and per-feature) to allow for higher inference update rates on our resource-limited hardware, and we connect hardware power budgets to achievable update frequency via a cycles-per-update model for inference on our Cortex-M0. We propose a resource-aware gait scheduling viewpoint: given a device power budget, we can select the gait mode (trot/intermediate/gallop) that maximizes expected RL reward at a corresponding feasible update frequency. Finally, we deploy our MLP policy on a real-world large-scale robot on uneven terrain, qualitatively noting that domain-randomized training can improve out-of-distribution stability. We do not claim real-world large-robot empirical zero-shot transfer in this work.
comment: 9 pages, 10 figures
☆ LSRE: Latent Semantic Rule Encoding for Real-Time Semantic Risk Detection in Autonomous Driving
Real-world autonomous driving must adhere to complex human social rules that extend beyond legally codified traffic regulations. Many of these semantic constraints, such as yielding to emergency vehicles, complying with traffic officers' gestures, or stopping for school buses, are intuitive for humans yet difficult to encode explicitly. Although large vision-language models (VLMs) can interpret such semantics, their inference cost makes them impractical for real-time deployment.This work proposes LSRE, a Latent Semantic Rule Encoding framework that converts sparsely sampled VLM judgments into decision boundaries within the latent space of a recurrent world model. By encoding language-defined safety semantics into a lightweight latent classifier, LSRE enables real-time semantic risk assessment at 10 Hz without per-frame VLM queries. Experiments on six semantic-failure scenarios in CARLA demonstrate that LSRE attains semantic risk detection accuracy comparable to a large VLM baseline, while providing substantially earlier hazard anticipation and maintaining low computational latency. LSRE further generalizes to rarely seen semantic-similar test cases, indicating that language-guided latent classification offers an effective and deployable mechanism for semantic safety monitoring in autonomous driving.
☆ Dynamic Policy Learning for Legged Robot with Simplified Model Pretraining and Model Homotopy Transfer
Generating dynamic motions for legged robots remains a challenging problem. While reinforcement learning has achieved notable success in various legged locomotion tasks, producing highly dynamic behaviors often requires extensive reward tuning or high-quality demonstrations. Leveraging reduced-order models can help mitigate these challenges. However, the model discrepancy poses a significant challenge when transferring policies to full-body dynamics environments. In this work, we introduce a continuation-based learning framework that combines simplified model pretraining and model homotopy transfer to efficiently generate and refine complex dynamic behaviors. First, we pretrain the policy using a single rigid body model to capture core motion patterns in a simplified environment. Next, we employ a continuation strategy to progressively transfer the policy to the full-body environment, minimizing performance loss. To define the continuation path, we introduce a model homotopy from the single rigid body model to the full-body model by gradually redistributing mass and inertia between the trunk and legs. The proposed method not only achieves faster convergence but also demonstrates superior stability during the transfer process compared to baseline methods. Our framework is validated on a range of dynamic tasks, including flips and wall-assisted maneuvers, and is successfully deployed on a real quadrupedal robot.
comment: 8 pages. Submitted to the IEEE for possible publication
☆ CREPES-X: Hierarchical Bearing-Distance-Inertial Direct Cooperative Relative Pose Estimation System
Relative localization is critical for cooperation in autonomous multi-robot systems. Existing approaches either rely on shared environmental features or inertial assumptions or suffer from non-line-of-sight degradation and outliers in complex environments. Robust and efficient fusion of inter-robot measurements such as bearings, distances, and inertials for tens of robots remains challenging. We present CREPES-X (Cooperative RElative Pose Estimation System with multiple eXtended features), a hierarchical relative localization framework that enhances speed, accuracy, and robustness under challenging conditions, without requiring any global information. CREPES-X starts with a compact hardware design: InfraRed (IR) LEDs, an IR camera, an ultra-wideband module, and an IMU housed in a cube no larger than 6cm on each side. Then CREPES-X implements a two-stage hierarchical estimator to meet different requirements, considering speed, accuracy, and robustness. First, we propose a single-frame relative estimator that provides instant relative poses for multi-robot setups through a closed-form solution and robust bearing outlier rejection. Then a multi-frame relative estimator is designed to offer accurate and robust relative states by exploring IMU pre-integration via robocentric relative kinematics with loosely- and tightly-coupled optimization. Extensive simulations and real-world experiments validate the effectiveness of CREPES-X, showing robustness to up to 90% bearing outliers, proving resilience in challenging conditions, and achieving RMSE of 0.073m and 1.817° in real-world datasets.
comment: 21 pages, 23 figures, journal
☆ ReSPIRe: Informative and Reusable Belief Tree Search for Robot Probabilistic Search and Tracking in Unknown Environments
Target search and tracking (SAT) is a fundamental problem for various robotic applications such as search and rescue and environmental exploration. This paper proposes an informative trajectory planning approach, namely ReSPIRe, for SAT in unknown cluttered environments under considerably inaccurate prior target information and limited sensing field of view. We first develop a novel sigma point-based approximation approach to fast and accurately estimate mutual information reward under non-Gaussian belief distributions, utilizing informative sampling in state and observation spaces to mitigate the computational intractability of integral calculation. To tackle significant uncertainty associated with inadequate prior target information, we propose the hierarchical particle structure in ReSPIRe, which not only extracts critical particles for global route guidance, but also adjusts the particle number adaptively for planning efficiency. Building upon the hierarchical structure, we develop the reusable belief tree search approach to build a policy tree for online trajectory planning under uncertainty, which reuses rollout evaluation to improve planning efficiency. Extensive simulations and real-world experiments demonstrate that ReSPIRe outperforms representative benchmark methods with smaller MI approximation error, higher search efficiency, and more stable tracking performance, while maintaining outstanding computational efficiency.
comment: 17 pages, 12 figures, accepted to IEEE Transactions on Systems, Man, and Cybernetics: Systems
☆ VLA-RAIL: A Real-Time Asynchronous Inference Linker for VLA Models and Robots
Vision-Language-Action (VLA) models have achieved remarkable breakthroughs in robotics, with the action chunk playing a dominant role in these advances. Given the real-time and continuous nature of robotic motion control, the strategies for fusing a queue of successive action chunks have a profound impact on the overall performance of VLA models. Existing methods suffer from jitter, stalling, or even pauses in robotic action execution, which not only limits the achievable execution speed but also reduces the overall success rate of task completion. This paper introduces VLA-RAIL (A Real-Time Asynchronous Inference Linker), a novel framework designed to address these issues by conducting model inference and robot motion control asynchronously and guaranteeing smooth, continuous, and high-speed action execution. The core contributions of the paper are two fold: a Trajectory Smoother that effectively filters out the noise and jitter in the trajectory of one action chunk using polynomial fitting and a Chunk Fuser that seamlessly align the current executing trajectory and the newly arrived chunk, ensuring position, velocity, and acceleration continuity between two successive action chunks. We validate the effectiveness of VLA-RAIL on a benchmark of dynamic simulation tasks and several real-world manipulation tasks. Experimental results demonstrate that VLA-RAIL significantly reduces motion jitter, enhances execution speed, and improves task success rates, which will become a key infrastructure for the large-scale deployment of VLA models.
☆ Antagonistic Bowden-Cable Actuation of a Lightweight Robotic Hand: Toward Dexterous Manipulation for Payload Constrained Humanoids
Humanoid robots toward human-level dexterity require robotic hands capable of simultaneously providing high grasping force, rapid actuation speeds, multiple degrees of freedom, and lightweight structures within human-like size constraints. Meeting these conflicting requirements remains challenging, as satisfying this combination typically necessitates heavier actuators and bulkier transmission systems, significantly restricting the payload capacity of robot arms. In this letter, we present a lightweight anthropomorphic hand actuated by Bowden cables, which uniquely combines rolling-contact joint optimization with antagonistic cable actuation, enabling single-motor-per-joint control with negligible cable-length deviation. By relocating the actuator module to the torso, the design substantially reduces distal mass while maintaining anthropomorphic scale and dexterity. Additionally, this antagonistic cable actuation eliminates the need for synchronization between motors. Using the proposed methods, the hand assembly with a distal mass of 236g (excluding remote actuators and Bowden sheaths) demonstrated reliable execution of dexterous tasks, exceeding 18N fingertip force and lifting payloads over one hundred times its own mass. Furthermore, robustness was validated through Cutkosky taxonomy grasps and trajectory consistency under perturbed actuator-hand transformations.
comment: Preprint
☆ RoboMIND 2.0: A Multimodal, Bimanual Mobile Manipulation Dataset for Generalizable Embodied Intelligence
Chengkai Hou, Kun Wu, Jiaming Liu, Zhengping Che, Di Wu, Fei Liao, Guangrun Li, Jingyang He, Qiuxuan Feng, Zhao Jin, Chenyang Gu, Zhuoyang Liu, Nuowei Han, Xiangju Mi, Yaoxu Lv, Yankai Fu, Gaole Dai, Langzhe Gu, Tao Li, Yuheng Zhang, Yixue Zhang, Xinhua Wang, Shichao Fan, Meng Li, Zhen Zhao, Ning Liu, Zhiyuan Xu, Pei Ren, Junjie Ji, Haonan Liu, Kuan Cheng, Shanghang Zhang, Jian Tang
While data-driven imitation learning has revolutionized robotic manipulation, current approaches remain constrained by the scarcity of large-scale, diverse real-world demonstrations. Consequently, the ability of existing models to generalize across long-horizon bimanual tasks and mobile manipulation in unstructured environments remains limited. To bridge this gap, we present RoboMIND 2.0, a comprehensive real-world dataset comprising over 310K dual-arm manipulation trajectories collected across six distinct robot embodiments and 739 complex tasks. Crucially, to support research in contact-rich and spatially extended tasks, the dataset incorporates 12K tactile-enhanced episodes and 20K mobile manipulation trajectories. Complementing this physical data, we construct high-fidelity digital twins of our real-world environments, releasing an additional 20K-trajectory simulated dataset to facilitate robust sim-to-real transfer. To fully exploit the potential of RoboMIND 2.0, we propose MIND-2 system, a hierarchical dual-system frame-work optimized via offline reinforcement learning. MIND-2 integrates a high-level semantic planner (MIND-2-VLM) to decompose abstract natural language instructions into grounded subgoals, coupled with a low-level Vision-Language-Action executor (MIND-2-VLA), which generates precise, proprioception-aware motor actions.
☆ Hybrid Motion Planning with Deep Reinforcement Learning for Mobile Robot Navigation
Autonomous mobile robots operating in complex, dynamic environments face the dual challenge of navigating large-scale, structurally diverse spaces with static obstacles while safely interacting with various moving agents. Traditional graph-based planners excel at long-range pathfinding but lack reactivity, while Deep Reinforcement Learning (DRL) methods demonstrate strong collision avoidance but often fail to reach distant goals due to a lack of global context. We propose Hybrid Motion Planning with Deep Reinforcement Learning (HMP-DRL), a hybrid framework that bridges this gap. Our approach utilizes a graph-based global planner to generate a path, which is integrated into a local DRL policy via a sequence of checkpoints encoded in both the state space and reward function. To ensure social compliance, the local planner employs an entity-aware reward structure that dynamically adjusts safety margins and penalties based on the semantic type of surrounding agents. We validate the proposed method through extensive testing in a realistic simulation environment derived from real-world map data. Comprehensive experiments demonstrate that HMP-DRL consistently outperforms other methods, including state-of-the-art approaches, in terms of key metrics of robot navigation: success rate, collision rate, and time to reach the goal. Overall, these findings confirm that integrating long-term path guidance with semantically-aware local control significantly enhances both the safety and reliability of autonomous navigation in complex human-centric settings.
comment: 22 pages, 4 figures
☆ Resolving State Ambiguity in Robot Manipulation via Adaptive Working Memory Recoding
Qingda Hu, Ziheng Qiu, Zijun Xu, Kaizhao Zhang, Xizhou Bu, Zuolei Sun, Bo Zhang, Jieru Zhao, Zhongxue Gan, Wenchao Ding
State ambiguity is common in robotic manipulation. Identical observations may correspond to multiple valid behavior trajectories. The visuomotor policy must correctly extract the appropriate types and levels of information from the history to identify the current task phase. However, naively extending the history window is computationally expensive and may cause severe overfitting. Inspired by the continuous nature of human reasoning and the recoding of working memory, we introduce PAM, a novel visuomotor Policy equipped with Adaptive working Memory. With minimal additional training cost in a two-stage manner, PAM supports a 300-frame history window while maintaining high inference speed. Specifically, a hierarchical frame feature extractor yields two distinct representations for motion primitives and temporal disambiguation. For compact representation, a context router with range-specific queries is employed to produce compact context features across multiple history lengths. And an auxiliary objective of reconstructing historical information is introduced to ensure that the context router acts as an effective bottleneck. We meticulously design 7 tasks and verify that PAM can handle multiple scenarios of state ambiguity simultaneously. With a history window of approximately 10 seconds, PAM still supports stable training and maintains inference speeds above 20Hz. Project website: https://tinda24.github.io/pam/
☆ DISF: Disentangled Iterative Surface Fitting for Contact-stable Grasp Planning with Grasp Pose Alignment to the Object Center of Mass
Tomoya Yamanokuchi, Alberto Bacchin, Emilio Olivastri, Ryotaro Arifuku, Takamitsu Matsubara, Emanuele Menegatti
In this work, we address the limitation of surface fitting-based grasp planning algorithm, which primarily focuses on geometric alignment between the gripper and object surface while overlooking the stability of contact point distribution, often resulting in unstable grasps due to inadequate contact configurations. To overcome this limitation, we propose a novel surface fitting algorithm that integrates contact stability while preserving geometric compatibility. Inspired by human grasping behavior, our method disentangles the grasp pose optimization into three sequential steps: (1) rotation optimization to align contact normals, (2) translation refinement to improve the alignment between the gripper frame origin and the object Center of Mass (CoM), and (3) gripper aperture adjustment to optimize contact point distribution. We validate our approach in simulation across 15 objects under both Known-shape (with clean CAD-derived dataset) and Observed-shape (with YCB object dataset) settings, including cross-platform grasp execution on three robot--gripper platforms. We further validate the method in real-world grasp experiments on a UR3e robot. Overall, DISF reduces CoM misalignment while maintaining geometric compatibility, translating into higher grasp success in both simulation and real-world execution compared to baselines. Additional videos and supplementary results are available on our project page: https://tomoya-yamanokuchi.github.io/disf-ras-project-page/
comment: 48 pages
♻ ☆ CLF-RL: Control Lyapunov Function Guided Reinforcement Learning
Reinforcement learning (RL) has shown promise in generating robust locomotion policies for bipedal robots, but often suffers from tedious reward design and sensitivity to poorly shaped objectives. In this work, we propose a structured reward shaping framework that leverages model-based trajectory generation and control Lyapunov functions (CLFs) to guide policy learning. We explore two model-based planners for generating reference trajectories: a reduced-order linear inverted pendulum (LIP) model for velocity-conditioned motion planning, and a precomputed gait library based on hybrid zero dynamics (HZD) using full-order dynamics. These planners define desired end-effector and joint trajectories, which are used to construct CLF-based rewards that penalize tracking error and encourage rapid convergence. This formulation provides meaningful intermediate rewards, and is straightforward to implement once a reference is available. Both the reference trajectories and CLF shaping are used only during training, resulting in a lightweight policy at deployment. We validate our method both in simulation and through extensive real-world experiments on a Unitree G1 robot. CLF-RL demonstrates significantly improved robustness relative to the baseline RL policy and better performance than a classic tracking reward RL formulation.
comment: 8 pages; 7 figures
♻ ☆ Learning Spatial-Aware Manipulation Ordering NeurIPS 2025
Manipulation in cluttered environments is challenging due to spatial dependencies among objects, where an improper manipulation order can cause collisions or blocked access. Existing approaches often overlook these spatial relationships, limiting their flexibility and scalability. To address these limitations, we propose OrderMind, a unified spatial-aware manipulation ordering framework that directly learns object manipulation priorities based on spatial context. Our architecture integrates a spatial context encoder with a temporal priority structuring module. We construct a spatial graph using k-Nearest Neighbors to aggregate geometric information from the local layout and encode both object-object and object-manipulator interactions to support accurate manipulation ordering in real-time. To generate physically and semantically plausible supervision signals, we introduce a spatial prior labeling method that guides a vision-language model to produce reasonable manipulation orders for distillation. We evaluate OrderMind on our Manipulation Ordering Benchmark, comprising 163,222 samples of varying difficulty. Extensive experiments in both simulation and real-world environments demonstrate that our method significantly outperforms prior approaches in effectiveness and efficiency, enabling robust manipulation in cluttered scenes.
comment: Accepted to NeurIPS 2025
♻ ☆ Theory of Mind for Explainable Human-Robot Interaction
Within the context of human-robot interaction (HRI), Theory of Mind (ToM) is intended to serve as a user-friendly backend to the interface of robotic systems, enabling robots to infer and respond to human mental states. When integrated into robots, ToM allows them to adapt their internal models to users' behaviors, enhancing the interpretability and predictability of their actions. Similarly, Explainable Artificial Intelligence (XAI) aims to make AI systems transparent and interpretable, allowing humans to understand and interact with them effectively. Since ToM in HRI serves related purposes, we propose to consider ToM as a form of XAI and evaluate it through the eValuation XAI (VXAI) framework and its seven desiderata. This paper identifies a critical gap in the application of ToM within HRI, as existing methods rarely assess the extent to which explanations correspond to the robot's actual internal reasoning. To address this limitation, we propose to integrate ToM within XAI frameworks. By embedding ToM principles inside XAI, we argue for a shift in perspective, as current XAI research focuses predominantly on the AI system itself and often lacks user-centered explanations. Incorporating ToM would enable a change in focus, prioritizing the user's informational needs and perspective.
♻ ☆ Towards Data-Driven Metrics for Social Robot Navigation Benchmarking
Pilar Bachiller-Burgos, Ulysses Bernardet, Luis V. Calderita, Pranup Chhetri, Anthony Francis, Noriaki Hirose, Noé Pérez, Dhruv Shah, Phani T. Singamaneni, Xuesu Xiao, Luis J. Manso
This paper presents a joint effort towards the development of a data-driven Social Robot Navigation metric to facilitate benchmarking and policy optimization for ground robots. We compiled a dataset with 4427 trajectories -- 182 real and 4245 simulated -- and presented it to human raters, yielding a total of 4402 rated trajectories after data quality assurance. Notably, we provide the first all-encompassing learned social robot navigation metric, along qualitative and quantitative results, including the test loss achieved, a comparison against hand-crafted metrics, and an ablation study. All data, software, and model weights are publicly available.
♻ ☆ AINav: Large Language Model-Based Adaptive Interactive Navigation
Robotic navigation in complex environments remains a critical research challenge. Traditional navigation methods focus on optimal trajectory generation within fixed free workspace, therefore struggling in environments lacking viable paths to the goal, such as disaster zones or cluttered warehouses. To address this problem, we propose AINav, an adaptive interactive navigation approach that proactively interacts with environments to create feasible paths to achieve originally unreachable goals. Specifically, we present a primitive skill tree for task planning with large language models (LLMs), facilitating effective reasoning to determine interaction objects and sequences. To ensure robust subtask execution, we adopt reinforcement learning to pre-train a comprehensive skill library containing versatile locomotion and interaction behaviors for motion planning. Furthermore, we introduce an adaptive replanning approach featuring two LLM-based modules: an advisor serving as a flexible replanning trigger and an arborist for autonomous plan adjustment. Integrated with the tree structure, the replanning mechanism allows for convenient node addition and pruning, enabling rapid plan adaptation in a priori unknown environments. Comprehensive simulations and experiments have demonstrated AINav's effectiveness and adaptivity in diverse scenarios. The supplementary video is available at: https://youtu.be/CjXm5KFx9AI.
comment: 13 pages, 12 figures, accepted to IEEE Robotics & Automation Magazine
♻ ☆ Collaborative Representation Learning for Alignment of Tactile, Language, and Vision Modalities
Tactile sensing offers rich and complementary information to vision and language, enabling robots to perceive fine-grained object properties. However, existing tactile sensors lack standardization, leading to redundant features that hinder cross-sensor generalization. Moreover, existing methods fail to fully integrate the intermediate communication among tactile, language, and vision modalities. To address this, we propose TLV-CoRe, a CLIP-based Tactile-Language-Vision Collaborative Representation learning method. TLV-CoRe introduces a Sensor-Aware Modulator to unify tactile features across different sensors and employs tactile-irrelevant decoupled learning to disentangle irrelevant tactile features. Additionally, a Unified Bridging Adapter is introduced to enhance tri-modal interaction within the shared representation space. To fairly evaluate the effectiveness of tactile models, we further propose the RSS evaluation framework, focusing on Robustness, Synergy, and Stability across different methods. Experimental results demonstrate that TLV-CoRe significantly improves sensor-agnostic representation learning and cross-modal alignment, offering a new direction for multimodal tactile representation.
♻ ☆ Passage-traversing optimal path planning with sampling-based algorithms
This paper introduces a new paradigm of optimal path planning, i.e., passage-traversing optimal path planning (PTOPP), that optimizes paths' traversed passages for specified optimization objectives. In particular, PTOPP is utilized to find the path with optimal accessible free space along its entire length, which represents a basic requirement for paths in robotics. As passages are places where free space shrinks and becomes constrained, the core idea is to leverage the path's passage traversal status to characterize its accessible free space comprehensively. To this end, a novel passage detection and free space decomposition method using proximity graphs is proposed, enabling fast detection of sparse but informative passages and environment decompositions. Based on this preprocessing, optimal path planning with accessible free space objectives or constraints is formulated as PTOPP problems compatible with sampling-based optimal planners. Then, sampling-based algorithms for PTOPP, including their dependent primitive procedures, are developed leveraging partitioned environments for fast passage traversal check. All these methods are implemented and thoroughly tested for effectiveness and efficiency validation. Compared to existing approaches, such as clearance-based methods, PTOPP demonstrates significant advantages in configurability, solution optimality, and efficiency, addressing prior limitations and incapabilities. It is believed to provide an efficient and versatile solution to accessible free space optimization over conventional avenues and more generally, to a broad class of path planning problems that can be formulated as PTOPP.
comment: 27 pages, 20 figures, 4 tables, journal paper
♻ ☆ VL-LN Bench: Towards Long-horizon Goal-oriented Navigation with Active Dialogs
Wensi Huang, Shaohao Zhu, Meng Wei, Jinming Xu, Xihui Liu, Hanqing Wang, Tai Wang, Feng Zhao, Jiangmiao Pang
In most existing embodied navigation tasks, instructions are well-defined and unambiguous, such as instruction following and object searching. Under this idealized setting, agents are required solely to produce effective navigation outputs conditioned on vision and language inputs. However, real-world navigation instructions are often vague and ambiguous, requiring the agent to resolve uncertainty and infer user intent through active dialog. To address this gap, we propose Interactive Instance Object Navigation (IION), a task that requires agents not only to generate navigation actions but also to produce language outputs via active dialog, thereby aligning more closely with practical settings. IION extends Instance Object Navigation (ION) by allowing agents to freely consult an oracle in natural language while navigating. Building on this task, we present the Vision Language-Language Navigation (VL-LN) benchmark, which provides a large-scale, automatically generated dataset and a comprehensive evaluation protocol for training and assessing dialog-enabled navigation models. VL-LN comprises over 41k long-horizon dialog-augmented trajectories for training and an automatic evaluation protocol with an oracle capable of responding to agent queries. Using this benchmark, we train a navigation model equipped with dialog capabilities and show that it achieves significant improvements over the baselines. Extensive experiments and analyses further demonstrate the effectiveness and reliability of VL-LN for advancing research on dialog-enabled embodied navigation. Code and dataset: https://0309hws.github.io/VL-LN.github.io/
♻ ☆ Large Language Model-Driven Closed-Loop UAV Operation with Semantic Observations
Recent advances in large Language Models (LLMs) have revolutionized mobile robots, including unmanned aerial vehicles (UAVs), enabling their intelligent operation within Internet of Things (IoT) ecosystems. However, LLMs still face challenges from logical reasoning and complex decision-making, leading to concerns about the reliability of LLM-driven UAV operations in IoT applications. In this paper, we propose a closed-loop LLM-driven UAV operation code generation framework that enables reliable UAV operations powered by effective feedback and refinement using two LLM modules, i.e., a Code Generator and an Evaluator. Our framework transforms numerical state observations from UAV operations into semantic trajectory descriptions to enhance the evaluator LLM's understanding of UAV dynamics for precise feedback generation. Our framework also enables a simulation-based refinement process, and hence eliminates the risks to physical UAVs caused by incorrect code execution during the refinement. Extensive experiments on UAV control tasks with different complexities are conducted. The experimental results show that our framework can achieve reliable UAV operations using LLMs, which significantly outperforms baseline methods in terms of success rate and completeness with the increase of task complexity.
comment: 13 pages, 10 figures