MyArxiv
Robotics 34
☆ Dexterity from Smart Lenses: Multi-Fingered Robot Manipulation with In-the-Wild Human Demonstrations
Learning multi-fingered robot policies from humans performing daily tasks in natural environments has long been a grand goal in the robotics community. Achieving this would mark significant progress toward generalizable robot manipulation in human environments, as it would reduce the reliance on labor-intensive robot data collection. Despite substantial efforts, progress toward this goal has been bottle-necked by the embodiment gap between humans and robots, as well as by difficulties in extracting relevant contextual and motion cues that enable learning of autonomous policies from in-the-wild human videos. We claim that with simple yet sufficiently powerful hardware for obtaining human data and our proposed framework AINA, we are now one significant step closer to achieving this dream. AINA enables learning multi-fingered policies from data collected by anyone, anywhere, and in any environment using Aria Gen 2 glasses. These glasses are lightweight and portable, feature a high-resolution RGB camera, provide accurate on-board 3D head and hand poses, and offer a wide stereo view that can be leveraged for depth estimation of the scene. This setup enables the learning of 3D point-based policies for multi-fingered hands that are robust to background changes and can be deployed directly without requiring any robot data (including online corrections, reinforcement learning, or simulation). We compare our framework against prior human-to-robot policy learning approaches, ablate our design choices, and demonstrate results across nine everyday manipulation tasks. Robot rollouts are best viewed on our website: https://aina-robot.github.io.
☆ InternData-A1: Pioneering High-Fidelity Synthetic Data for Pre-training Generalist Policy
Recent works explore how real and synthetic data contribute to Vision-Language-Action (VLA) models' generalization. While current VLA models have shown the strong effectiveness of large-scale real-robot pre-training, synthetic data has not previously demonstrated comparable capability at scale. This paper provides the first evidence that synthetic data alone can match the performance of the strongest $π$-dataset in pre-training a VLA model, revealing the substantial value of large-scale simulation. The resulting model also exhibits surprisingly zero-shot sim-to-real transfer on several challenging tasks. Our synthetic dataset, InternData-A1, contains over 630k trajectories and 7,433 hours across 4 embodiments, 18 skills, 70 tasks, and 227 scenes, covering rigid, articulated, deformable, and fluid-object manipulation. It is generated through a highly autonomous, fully decoupled, and compositional simulation pipeline that enables long-horizon skill composition, flexible task assembly, and heterogeneous embodiments with minimal manual tuning. Using the same architecture as $π_0$, we pre-train a model entirely on InternData-A1 and find that it matches the official $π_0$ across 49 simulation tasks, 5 real-world tasks, and 4 long-horizon dexterous tasks. We release the dataset and will open-source the generation pipeline to broaden access to large-scale robotic data and to lower the barrier to scalable data creation for embodied AI research.
☆ Green Resilience of Cyber-Physical Systems: Doctoral Dissertation
Cyber-physical systems (CPS) combine computational and physical components. Online Collaborative AI System (OL-CAIS) is a type of CPS that learn online in collaboration with humans to achieve a common goal, which makes it vulnerable to disruptive events that degrade performance. Decision-makers must therefore restore performance while limiting energy impact, creating a trade-off between resilience and greenness. This research addresses how to balance these two properties in OL-CAIS. It aims to model resilience for automatic state detection, develop agent-based policies that optimize the greenness-resilience trade-off, and understand catastrophic forgetting to maintain performance consistency. We model OL-CAIS behavior through three operational states: steady, disruptive, and final. To support recovery during disruptions, we introduce the GResilience framework, which provides recovery strategies through multi-objective optimization (one-agent), game-theoretic decision-making (two-agent), and reinforcement learning (RL-agent). We also design a measurement framework to quantify resilience and greenness. Empirical evaluation uses real and simulated experiments with a collaborative robot learning object classification from human demonstrations. Results show that the resilience model captures performance transitions during disruptions, and that GResilience policies improve green recovery by shortening recovery time, stabilizing performance, and reducing human dependency. RL-agent policies achieve the strongest results, although with a marginal increase in CO2 emissions. We also observe catastrophic forgetting after repeated disruptions, while our policies help maintain steadiness. A comparison with containerized execution shows that containerization cuts CO2 emissions by half. Overall, this research provides models, metrics, and policies that ensure the green recovery of OL-CAIS.
☆ MiMo-Embodied: X-Embodied Foundation Model Technical Report
We open-source MiMo-Embodied, the first cross-embodied foundation model to successfully integrate and achieve state-of-the-art performance in both Autonomous Driving and Embodied AI. MiMo-Embodied sets new records across 17 embodied AI benchmarks in Task Planning, Affordance Prediction and Spatial Understanding, while also excelling in 12 autonomous driving benchmarks across Environmental Perception, Status Prediction, and Driving Planning. Across these tasks, MiMo-Embodied significantly outperforms existing open-source, closed-source, and specialized baselines. Our results indicate that through multi-stage learning, curated data construction, and CoT/RL fine-tuning, these two domains exhibit strong positive transfer and mutually reinforce one another. We provide a detailed analysis of our model design and training methodologies to facilitate further research. Code and models are available at https://github.com/XiaomiMiMo/MiMo-Embodied.
comment: Code: https://github.com/XiaomiMiMo/MiMo-Embodied Model: https://huggingface.co/XiaomiMiMo/MiMo-Embodied-7B
☆ From Prompts to Printable Models: Support-Effective 3D Generation via Offset Direct Preference Optimization
The transition from digital 3D models to physical objects via 3D printing often requires support structures to prevent overhanging features from collapsing during the fabrication process. While current slicing technologies offer advanced support strategies, they focus on post-processing optimizations rather than addressing the underlying need for support-efficient design during the model generation phase. This paper introduces SEG (\textit{\underline{S}upport-\underline{E}ffective \underline{G}eneration}), a novel framework that integrates Direct Preference Optimization with an Offset (ODPO) into the 3D generation pipeline to directly optimize models for minimal support material usage. By incorporating support structure simulation into the training process, SEG encourages the generation of geometries that inherently require fewer supports, thus reducing material waste and production time. We demonstrate SEG's effectiveness through extensive experiments on two benchmark datasets, Thingi10k-Val and GPT-3DP-Val, showing that SEG significantly outperforms baseline models such as TRELLIS, DPO, and DRO in terms of support volume reduction and printability. Qualitative results further reveal that SEG maintains high fidelity to input prompts while minimizing the need for support structures. Our findings highlight the potential of SEG to transform 3D printing by directly optimizing models during the generative process, paving the way for more sustainable and efficient digital fabrication practices.
comment: Technical report (7 pages)
☆ LAOF: Robust Latent Action Learning with Optical Flow Constraints
Learning latent actions from large-scale videos is crucial for the pre-training of scalable embodied foundation models, yet existing methods often struggle with action-irrelevant distractors. Although incorporating action supervision can alleviate these distractions, its effectiveness is restricted by the scarcity of available action labels. Optical flow represents pixel-level motion between consecutive frames, naturally suppressing background elements and emphasizing moving objects. Motivated by this, we propose robust Latent Action learning with Optical Flow constraints, called LAOF, a pseudo-supervised framework that leverages the agent's optical flow as an action-driven signal to learn latent action representations robust to distractors. Experimental results show that the latent representations learned by LAOF outperform existing methods on downstream imitation learning and reinforcement learning tasks. This superior performance arises from optical flow constraints, which substantially stabilize training and improve the quality of latent representations under extremely label-scarce conditions, while remaining effective as the proportion of action labels increases to 10 percent. Importantly, even without action supervision, LAOF matches or surpasses action-supervised methods trained with 1 percent of action labels.
comment: Code can be found at https://github.com/XizoB/LAOF
☆ Homogeneous Proportional-Integral-Derivative Controller in Mobile Robotic Manipulators
Mobile robotic manipulators (MRMs), which integrate mobility and manipulation capabilities, present significant control challenges due to their nonlinear dynamics, underactuation, and coupling between the base and manipulator subsystems. This paper proposes a novel homogeneous Proportional-Integral-Derivative (hPID) control strategy tailored for MRMs to achieve robust and coordinated motion control. Unlike classical PID controllers, the hPID controller leverages the mathematical framework of homogeneous control theory to systematically enhance the stability and convergence properties of the closed-loop system, even in the presence of dynamic uncertainties and external disturbances involved into a system in a homogeneous way. A homogeneous PID structure is designed, ensuring improved convergence of tracking errors through a graded homogeneity approach that generalizes traditional PID gains to nonlinear, state-dependent functions. Stability analysis is conducted using Lyapunov-based methods, demonstrating that the hPID controller guarantees global asymptotic stability and finite-time convergence under mild assumptions. Experimental results on a representative MRM model validate the effectiveness of the hPID controller in achieving high-precision trajectory tracking for both the mobile base and manipulator arm, outperforming conventional linear PID controllers in terms of response time, steady-state error, and robustness to model uncertainties. This research contributes a scalable and analytically grounded control framework for enhancing the autonomy and reliability of next-generation mobile manipulation systems in structured and unstructured environments.
☆ Robot Metacognition: Decision Making with Confidence for Tool Invention
Robots today often miss a key ingredient of truly intelligent behavior: the ability to reflect on their own cognitive processes and decisions. In humans, this self-monitoring or metacognition is crucial for learning, decision making and problem solving. For instance, they can evaluate how confident they are in performing a task, thus regulating their own behavior and allocating proper resources. Taking inspiration from neuroscience, we propose a robot metacognition architecture centered on confidence (a second-order judgment on decisions) and we demonstrate it on the use case of autonomous tool invention. We propose the use of confidence as a metacognitive measure within the robot decision making scheme. Confidence-informed robots can evaluate the reliability of their decisions, improving their robustness during real-world physical deployment. This form of robotic metacognition emphasizes embodied action monitoring as a means to achieve better informed decisions. We also highlight potential applications and research directions for robot metacognition.
comment: under review
☆ Flow-Aided Flight Through Dynamic Clutters From Point To Motion
Challenges in traversing dynamic clutters lie mainly in the efficient perception of the environmental dynamics and the generation of evasive behaviors considering obstacle movement. Previous solutions have made progress in explicitly modeling the dynamic obstacle motion for avoidance, but this key dependency of decision-making is time-consuming and unreliable in highly dynamic scenarios with occlusions. On the contrary, without introducing object detection, tracking, and prediction, we empower the reinforcement learning (RL) with single LiDAR sensing to realize an autonomous flight system directly from point to motion. For exteroception, a depth sensing distance map achieving fixed-shape, low-resolution, and detail-safe is encoded from raw point clouds, and an environment change sensing point flow is adopted as motion features extracted from multi-frame observations. These two are integrated into a lightweight and easy-to-learn representation of complex dynamic environments. For action generation, the behavior of avoiding dynamic threats in advance is implicitly driven by the proposed change-aware sensing representation, where the policy optimization is indicated by the relative motion modulated distance field. With the deployment-friendly sensing simulation and dynamics model-free acceleration control, the proposed system shows a superior success rate and adaptability to alternatives, and the policy derived from the simulator can drive a real-world quadrotor with safe maneuvers.
comment: Accepted to IEEE Robotics and Automation Letters (RA-L), November, 2025
☆ The Shawshank Redemption of Embodied AI: Understanding and Benchmarking Indirect Environmental Jailbreaks
The adoption of Vision-Language Models (VLMs) in embodied AI agents, while being effective, brings safety concerns such as jailbreaking. Prior work have explored the possibility of directly jailbreaking the embodied agents through elaborated multi-modal prompts. However, no prior work has studied or even reported indirect jailbreaks in embodied AI, where a black-box attacker induces a jailbreak without issuing direct prompts to the embodied agent. In this paper, we propose, for the first time, indirect environmental jailbreak (IEJ), a novel attack to jailbreak embodied AI via indirect prompt injected into the environment, such as malicious instructions written on a wall. Our key insight is that embodied AI does not ''think twice'' about the instructions provided by the environment -- a blind trust that attackers can exploit to jailbreak the embodied agent. We further design and implement open-source prototypes of two fully-automated frameworks: SHAWSHANK, the first automatic attack generation framework for the proposed attack IEJ; and SHAWSHANK-FORGE, the first automatic benchmark generation framework for IEJ. Then, using SHAWSHANK-FORGE, we automatically construct SHAWSHANK-BENCH, the first benchmark for indirectly jailbreaking embodied agents. Together, our two frameworks and one benchmark answer the questions of what content can be used for malicious IEJ instructions, where they should be placed, and how IEJ can be systematically evaluated. Evaluation results show that SHAWSHANK outperforms eleven existing methods across 3,957 task-scene combinations and compromises all six tested VLMs. Furthermore, current defenses only partially mitigate our attack, and we have responsibly disclosed our findings to all affected VLM vendors.
☆ Safe and Optimal Variable Impedance Control via Certified Reinforcement Learning
Reinforcement learning (RL) offers a powerful approach for robots to learn complex, collaborative skills by combining Dynamic Movement Primitives (DMPs) for motion and Variable Impedance Control (VIC) for compliant interaction. However, this model-free paradigm often risks instability and unsafe exploration due to the time-varying nature of impedance gains. This work introduces Certified Gaussian Manifold Sampling (C-GMS), a novel trajectory-centric RL framework that learns combined DMP and VIC policies while guaranteeing Lyapunov stability and actuator feasibility by construction. Our approach reframes policy exploration as sampling from a mathematically defined manifold of stable gain schedules. This ensures every policy rollout is guaranteed to be stable and physically realizable, thereby eliminating the need for reward penalties or post-hoc validation. Furthermore, we provide a theoretical guarantee that our approach ensures bounded tracking error even in the presence of bounded model errors and deployment-time uncertainties. We demonstrate the effectiveness of C-GMS in simulation and verify its efficacy on a real robot, paving the way for reliable autonomous interaction in complex environments.
☆ InEKFormer: A Hybrid State Estimator for Humanoid Robots
Humanoid robots have great potential for a wide range of applications, including industrial and domestic use, healthcare, and search and rescue missions. However, bipedal locomotion in different environments is still a challenge when it comes to performing stable and dynamic movements. This is where state estimation plays a crucial role, providing fast and accurate feedback of the robot's floating base state to the motion controller. Although classical state estimation methods such as Kalman filters are widely used in robotics, they require expert knowledge to fine-tune the noise parameters. Due to recent advances in the field of machine learning, deep learning methods are increasingly used for state estimation tasks. In this work, we propose the InEKFormer, a novel hybrid state estimation method that incorporates an invariant extended Kalman filter (InEKF) and a Transformer network. We compare our method with the InEKF and the KalmanNet approaches on datasets obtained from the humanoid robot RH5. The results indicate the potential of Transformers in humanoid state estimation, but also highlight the need for robust autoregressive training in these high-dimensional problems.
comment: Accepted at The 22nd International Conference on Advanced Robotics (ICAR 2025)
☆ Funabot-Upper: McKibben Actuated Haptic Suit Inducing Kinesthetic Perceptions in Trunk, Shoulder, Elbow, and Wrist
This paper presents Funabot-Upper, a wearable haptic suit that enables users to perceive 14 upper-body motions, including those of the trunk, shoulder, elbow, and wrist. Inducing kinesthetic perception through wearable haptic devices has attracted attention, and various devices have been developed in the past. However, these have been limited to verifications on single body parts, and few have applied the same method to multiple body parts as well. In our previous study, we developed a technology that uses the contraction of artificial muscles to deform clothing in three dimensions. Using this technology, we developed a haptic suit that induces kinesthetic perception of 7 motions in multiple upper body. However, perceptual mixing caused by stimulating multiple human muscles has occurred between the shoulder and the elbow. In this paper, we established a new, simplified design policy and developed a novel haptic suit that induces kinesthetic perceptions in the trunk, shoulder, elbow, and wrist by stimulating joints and muscles independently. We experimentally demonstrated the induced kinesthetic perception and examined the relationship between stimulation and perceived kinesthetic perception under the new design policy. Experiments confirmed that Funabot-Upper successfully induces kinesthetic perception across multiple joints while reducing perceptual mixing observed in previous designs. The new suit improved recognition accuracy from 68.8% to 94.6% compared to the previous Funabot-Suit, demonstrating its superiority and potential for future haptic applications.
comment: 8 pages, 8 figures. This work has been submitted to the IEEE for possible publication
☆ How Robot Dogs See the Unseeable
Peering, a side-to-side motion used by animals to estimate distance through motion parallax, offers a powerful bio-inspired strategy to overcome a fundamental limitation in robotic vision: partial occlusion. Conventional robot cameras, with their small apertures and large depth of field, render both foreground obstacles and background objects in sharp focus, causing occluders to obscure critical scene information. This work establishes a formal connection between animal peering and synthetic aperture (SA) sensing from optical imaging. By having a robot execute a peering motion, its camera describes a wide synthetic aperture. Computational integration of the captured images synthesizes an image with an extremely shallow depth of field, effectively blurring out occluding elements while bringing the background into sharp focus. This efficient, wavelength-independent technique enables real-time, high-resolution perception across various spectral bands. We demonstrate that this approach not only restores basic scene understanding but also empowers advanced visual reasoning in large multimodal models, which fail with conventionally occluded imagery. Unlike feature-dependent multi-view 3D vision methods or active sensors like LiDAR, SA sensing via peering is robust to occlusion, computationally efficient, and immediately deployable on any mobile robot. This research bridges animal behavior and robotics, suggesting that peering motions for synthetic aperture sensing are a key to advanced scene understanding in complex, cluttered environments.
☆ FT-NCFM: An Influence-Aware Data Distillation Framework for Efficient VLA Models AAAI
The powerful generalization of Vision-Language-Action (VLA) models is bottlenecked by their heavy reliance on massive, redundant, and unevenly valued datasets, hindering their widespread application. Existing model-centric optimization paths, such as model compression (which often leads to performance degradation) or policy distillation (whose products are model-dependent and lack generality), fail to fundamentally address this data-level challenge. To this end, this paper introduces FT-NCFM, a fundamentally different, data-centric generative data distillation framework. Our framework employs a self-contained Fact-Tracing (FT) engine that combines causal attribution with programmatic contrastive verification to assess the intrinsic value of samples. Guided by these assessments, an adversarial NCFM process synthesizes a model-agnostic, information-dense, and reusable data asset. Experimental results on several mainstream VLA benchmarks show that models trained on just 5% of our distilled coreset achieve a success rate of 85-90% compared with training on the full dataset, while reducing training time by over 80%. Our work demonstrates that intelligent data distillation is a highly promising new path for building efficient, high-performance VLA models.
comment: Accepted at the AAAI Conference on Artificial Intelligence (AAAI-26)
☆ DynaMimicGen: A Data Generation Framework for Robot Learning of Dynamic Tasks
Learning robust manipulation policies typically requires large and diverse datasets, the collection of which is time-consuming, labor-intensive, and often impractical for dynamic environments. In this work, we introduce DynaMimicGen (D-MG), a scalable dataset generation framework that enables policy training from minimal human supervision while uniquely supporting dynamic task settings. Given only a few human demonstrations, D-MG first segments the demonstrations into meaningful sub-tasks, then leverages Dynamic Movement Primitives (DMPs) to adapt and generalize the demonstrated behaviors to novel and dynamically changing environments. Improving prior methods that rely on static assumptions or simplistic trajectory interpolation, D-MG produces smooth, realistic, and task-consistent Cartesian trajectories that adapt in real time to changes in object poses, robot states, or scene geometry during task execution. Our method supports different scenarios - including scene layouts, object instances, and robot configurations - making it suitable for both static and highly dynamic manipulation tasks. We show that robot agents trained via imitation learning on D-MG-generated data achieve strong performance across long-horizon and contact-rich benchmarks, including tasks like cube stacking and placing mugs in drawers, even under unpredictable environment changes. By eliminating the need for extensive human demonstrations and enabling generalization in dynamic settings, D-MG offers a powerful and efficient alternative to manual data collection, paving the way toward scalable, autonomous robot learning.
☆ PIPHEN: Physical Interaction Prediction with Hamiltonian Energy Networks AAAI
Multi-robot systems in complex physical collaborations face a "shared brain dilemma": transmitting high-dimensional multimedia data (e.g., video streams at ~30MB/s) creates severe bandwidth bottlenecks and decision-making latency. To address this, we propose PIPHEN, an innovative distributed physical cognition-control framework. Its core idea is to replace "raw data communication" with "semantic communication" by performing "semantic distillation" at the robot edge, reconstructing high-dimensional perceptual data into compact, structured physical representations. This idea is primarily realized through two key components: (1) a novel Physical Interaction Prediction Network (PIPN), derived from large model knowledge distillation, to generate this representation; and (2) a Hamiltonian Energy Network (HEN) controller, based on energy conservation, to precisely translate this representation into coordinated actions. Experiments show that, compared to baseline methods, PIPHEN can compress the information representation to less than 5% of the original data volume and reduce collaborative decision-making latency from 315ms to 76ms, while significantly improving task success rates. This work provides a fundamentally efficient paradigm for resolving the "shared brain dilemma" in resource-constrained multi-robot systems.
comment: Accepted at the AAAI Conference on Artificial Intelligence (AAAI-26)
☆ MagBotSim: Physics-Based Simulation and Reinforcement Learning Environments for Magnetic Robotics
Magnetic levitation is about to revolutionize in-machine material flow in industrial automation. Such systems are flexibly configurable and can include a large number of independently actuated shuttles (movers) that dynamically rebalance production capacity. Beyond their capabilities for dynamic transportation, these systems possess the inherent yet unexploited potential to perform manipulation. By merging the fields of transportation and manipulation into a coordinated swarm of magnetic robots (MagBots), we enable manufacturing systems to achieve significantly higher efficiency, adaptability, and compactness. To support the development of intelligent algorithms for magnetic levitation systems, we introduce MagBotSim (Magnetic Robotics Simulation): a physics-based simulation for magnetic levitation systems. By framing magnetic levitation systems as robot swarms and providing a dedicated simulation, this work lays the foundation for next generation manufacturing systems powered by Magnetic Robotics. MagBotSim's documentation, videos, experiments, and code are available at: https://ubi-coro.github.io/MagBotSim/
☆ LEGO-SLAM: Language-Embedded Gaussian Optimization SLAM
Recent advances in 3D Gaussian Splatting (3DGS) have enabled Simultaneous Localization and Mapping (SLAM) systems to build photorealistic maps. However, these maps lack the open-vocabulary semantic understanding required for advanced robotic interaction. Integrating language features into SLAM remains a significant challenge, as storing high-dimensional features demands excessive memory and rendering overhead, while existing methods with static models lack adaptability for novel environments. To address these limitations, we propose LEGO-SLAM (Language-Embedded Gaussian Optimization SLAM), the first framework to achieve real-time, open-vocabulary mapping within a 3DGS-based SLAM system. At the core of our method is a scene-adaptive encoder-decoder that distills high-dimensional language embeddings into a compact 16-dimensional feature space. This design reduces the memory per Gaussian and accelerates rendering, enabling real-time performance. Unlike static approaches, our encoder adapts online to unseen scenes. These compact features also enable a language-guided pruning strategy that identifies semantic redundancy, reducing the map's Gaussian count by over 60\% while maintaining rendering quality. Furthermore, we introduce a language-based loop detection approach that reuses these mapping features, eliminating the need for a separate detection model. Extensive experiments demonstrate that LEGO-SLAM achieves competitive mapping quality and tracking accuracy, all while providing open-vocabulary capabilities at 15 FPS.
comment: 18 pages
☆ Heterogeneous Stroke: Using Unique Vibration Cues to Improve the Wrist-Worn Spatiotemporal Tactile Display
Beyond a simple notification of incoming calls or messages, more complex information such as alphabets and digits can be delivered through spatiotemporal tactile patterns (STPs) on a wrist-worn tactile display (WTD) with multiple tactors. However, owing to the limited skin area and spatial acuity of the wrist, frequent confusions occur between closely located tactors, resulting in a low recognition accuracy. Furthermore, the accuracies reported in previous studies have mostly been measured for a specific posture and could further decrease with free arm postures in real life. Herein, we present Heterogeneous Stroke, a design concept for improving the recognition accuracy of STPs on a WTD. By assigning unique vibrotactile stimuli to each tactor, the confusion between tactors can be reduced. Through our implementation of Heterogeneous Stroke, the alphanumeric characters could be delivered with high accuracy (93.8% for 26 alphabets and 92.4% for 10 digits) across different arm postures.
comment: ACM CHI 2021
☆ Bi-AQUA: Bilateral Control-Based Imitation Learning for Underwater Robot Arms via Lighting-Aware Action Chunking with Transformers
Underwater robotic manipulation is fundamentally challenged by extreme lighting variations, color distortion, and reduced visibility. We introduce Bi-AQUA, the first underwater bilateral control-based imitation learning framework that integrates lighting-aware visual processing for underwater robot arms. Bi-AQUA employs a hierarchical three-level lighting adaptation mechanism: a Lighting Encoder that extracts lighting representations from RGB images without manual annotation and is implicitly supervised by the imitation objective, FiLM modulation of visual backbone features for adaptive, lighting-aware feature extraction, and an explicit lighting token added to the transformer encoder input for task-aware conditioning. Experiments on a real-world underwater pick-and-place task under diverse static and dynamic lighting conditions show that Bi-AQUA achieves robust performance and substantially outperforms a bilateral baseline without lighting modeling. Ablation studies further confirm that all three lighting-aware components are critical. This work bridges terrestrial bilateral control-based imitation learning and underwater manipulation, enabling force-sensitive autonomous operation in challenging marine environments. For additional material, please check: https://mertcookimg.github.io/bi-aqua
☆ Semantic Glitch: Agency and Artistry in an Autonomous Pixel Cloud NeurIPS 2025
While mainstream robotics pursues metric precision and flawless performance, this paper explores the creative potential of a deliberately "lo-fi" approach. We present the "Semantic Glitch," a soft flying robotic art installation whose physical form, a 3D pixel style cloud, is a "physical glitch" derived from digital archaeology. We detail a novel autonomous pipeline that rejects conventional sensors like LiDAR and SLAM, relying solely on the qualitative, semantic understanding of a Multimodal Large Language Model to navigate. By authoring a bio-inspired personality for the robot through a natural language prompt, we create a "narrative mind" that complements the "weak," historically, loaded body. Our analysis begins with a 13-minute autonomous flight log, and a follow-up study statistically validates the framework's robustness for authoring quantifiably distinct personas. The combined analysis reveals emergent behaviors, from landmark-based navigation to a compelling "plan to execution" gap, and a character whose unpredictable, plausible behavior stems from a lack of precise proprioception. This demonstrates a lo-fi framework for creating imperfect companions whose success is measured in character over efficiency.
comment: NeurIPS 2025 Creative AI Track, The Thirty-Ninth Annual Conference on Neural Information Processing Systems
☆ Towards a Safer and Sustainable Manufacturing Process: Material classification in Laser Cutting Using Deep Learning
Laser cutting is a widely adopted technology in material processing across various industries, but it generates a significant amount of dust, smoke, and aerosols during operation, posing a risk to both the environment and workers' health. Speckle sensing has emerged as a promising method to monitor the cutting process and identify material types in real-time. This paper proposes a material classification technique using a speckle pattern of the material's surface based on deep learning to monitor and control the laser cutting process. The proposed method involves training a convolutional neural network (CNN) on a dataset of laser speckle patterns to recognize distinct material types for safe and efficient cutting. Previous methods for material classification using speckle sensing may face issues when the color of the laser used to produce the speckle pattern is changed. Experiments conducted in this study demonstrate that the proposed method achieves high accuracy in material classification, even when the laser color is changed. The model achieved an accuracy of 98.30 % on the training set and 96.88% on the validation set. Furthermore, the model was evaluated on a set of 3000 new images for 30 different materials, achieving an F1-score of 0.9643. The proposed method provides a robust and accurate solution for material-aware laser cutting using speckle sensing.
☆ PushingBots: Collaborative Pushing via Neural Accelerated Combinatorial Hybrid Optimization
Many robots are not equipped with a manipulator and many objects are not suitable for prehensile manipulation (such as large boxes and cylinders). In these cases, pushing is a simple yet effective non-prehensile skill for robots to interact with and further change the environment. Existing work often assumes a set of predefined pushing modes and fixed-shape objects. This work tackles the general problem of controlling a robotic fleet to push collaboratively numerous arbitrary objects to respective destinations, within complex environments of cluttered and movable obstacles. It incorporates several characteristic challenges for multi-robot systems such as online task coordination under large uncertainties of cost and duration, and for contact-rich tasks such as hybrid switching among different contact modes, and under-actuation due to constrained contact forces. The proposed method is based on combinatorial hybrid optimization over dynamic task assignments and hybrid execution via sequences of pushing modes and associated forces. It consists of three main components: (I) the decomposition, ordering and rolling assignment of pushing subtasks to robot subgroups; (II) the keyframe guided hybrid search to optimize the sequence of parameterized pushing modes for each subtask; (III) the hybrid control to execute these modes and transit among them. Last but not least, a diffusion-based accelerator is adopted to predict the keyframes and pushing modes that should be prioritized during hybrid search; and further improve planning efficiency. The framework is complete under mild assumptions. Its efficiency and effectiveness under different numbers of robots and general-shaped objects are validated extensively in simulations and hardware experiments, as well as generalizations to heterogeneous robots, planar assembly and 6D pushing.
comment: 20 pages, 24 figures. Accepted to IEEE Transactions on Robotics (T-RO), 2025
☆ The Role of Consequential and Functional Sound in Human-Robot Interaction: Toward Audio Augmented Reality Interfaces
As robots become increasingly integrated into everyday environments, understanding how they communicate with humans is critical. Sound offers a powerful channel for interaction, encompassing both operational noises and intentionally designed auditory cues. In this study, we examined the effects of consequential and functional sounds on human perception and behavior, including a novel exploration of spatial sound through localization and handover tasks. Results show that consequential sounds of the Kinova Gen3 manipulator did not negatively affect perceptions, spatial localization is highly accurate for lateral cues but declines for frontal cues, and spatial sounds can simultaneously convey task-relevant information while promoting warmth and reducing discomfort. These findings highlight the potential of functional and transformative auditory design to enhance human-robot collaboration and inform future sound-based interaction strategies.
comment: 9 pages, 6 figures
♻ ☆ CleverDistiller: Simple and Spatially Consistent Cross-modal Distillation BMVC 2025
Vision foundation models (VFMs) such as DINO have led to a paradigm shift in 2D camera-based perception towards extracting generalized features to support many downstream tasks. Recent works introduce self-supervised cross-modal knowledge distillation (KD) as a way to transfer these powerful generalization capabilities into 3D LiDAR-based models. However, they either rely on highly complex distillation losses, pseudo-semantic maps, or limit KD to features useful for semantic segmentation only. In this work, we propose CleverDistiller, a self-supervised, cross-modal 2D-to-3D KD framework introducing a set of simple yet effective design choices: Unlike contrastive approaches relying on complex loss design choices, our method employs a direct feature similarity loss in combination with a multi layer perceptron (MLP) projection head to allow the 3D network to learn complex semantic dependencies throughout the projection. Crucially, our approach does not depend on pseudo-semantic maps, allowing for direct knowledge transfer from a VFM without explicit semantic supervision. Additionally, we introduce the auxiliary self-supervised spatial task of occupancy prediction to enhance the semantic knowledge, obtained from a VFM through KD, with 3D spatial reasoning capabilities. Experiments on standard autonomous driving benchmarks for 2D-to-3D KD demonstrate that CleverDistiller achieves state-of-the-art performance in both semantic segmentation and 3D object detection (3DOD) by up to 10% mIoU, especially when fine tuning on really low data amounts, showing the effectiveness of our simple yet powerful KD strategy
comment: Accepted to BMVC 2025
♻ ☆ Non-Gaited Legged Locomotion with Monte-Carlo Tree Search and Supervised Learning
Legged robots are able to navigate complex terrains by continuously interacting with the environment through careful selection of contact sequences and timings. However, the combinatorial nature behind contact planning hinders the applicability of such optimization problems on hardware. In this work, we present a novel approach that optimizes gait sequences and respective timings for legged robots in the context of optimization-based controllers through the use of sampling-based methods and supervised learning techniques. We propose to bootstrap the search by learning an optimal value function in order to speed-up the gait planning procedure making it applicable in real-time. To validate our proposed method, we showcase its performance both in simulation and on hardware using a 22 kg electric quadruped robot. The method is assessed on different terrains, under external perturbations, and in comparison to a standard control approach where the gait sequence is fixed a priori.
♻ ☆ A Continuous sEMG-Based Prosthetic Hand Control System Without Motion or Force Sensors
Regressively-based surface electromyography (sEMG) prosthetics are widely used for their ability to continuously convert muscle activity into finger force and motion. However, they typically require additional kinematic or dynamic sensors, which increases complexity and limits practical application. To address this, this paper proposes a method based on the simplified near-linear relationship between sEMG and finger force, using the near-linear model ResDD proposed in this work. By applying the principle that a line can be determined by two points, we eliminate the need for complex sensor calibration. Specifically, by recording the sEMG during maximum finger flexion and extension, and assigning corresponding forces of 1 and -1, the ResDD model can fit the simplified relationship between sEMG signals and force, enabling continuous prediction and control of finger force and gestures. Offline experiments were conducted to evaluate the model's classification accuracy and its ability to learn sufficient information. It uses interpolation analysis to open up the internal structure of the trained model and checks whether the fitted curve of the model conforms to the nearly linear relationship between sEMG and force. Finally, online control and sine wave tracking experiments were carried out to further verify the practicality of the proposed method. The results show that the method effectively extracts meaningful information from sEMG and accurately decodes them. The near-linear model sufficiently reflects the expected relationship between sEMG and finger force. Fitting this simplified near-linear relationship is adequate to achieve continuous and smooth control of finger force and gestures, confirming the feasibility and effectiveness of the proposed approach.
comment: 12 pages
♻ ☆ Risk Map As Middleware: Towards Interpretable Cooperative End-to-end Autonomous Driving for Risk-Aware Planning
End-to-end paradigm has emerged as a promising approach to autonomous driving. However, existing single-agent end-to-end pipelines are often constrained by occlusion and limited perception range, resulting in hazardous driving. Furthermore, their black-box nature prevents the interpretability of the driving behavior, leading to an untrustworthiness system. To address these limitations, we introduce Risk Map as Middleware (RiskMM) and propose an interpretable cooperative end-to-end driving framework. The risk map learns directly from the driving data and provides an interpretable spatiotemporal representation of the scenario from the upstream perception and the interactions between the ego vehicle and the surrounding environment for downstream planning. RiskMM first constructs a multi-agent spatiotemporal representation with unified Transformer-based architecture, then derives risk-aware representations by modeling interactions among surrounding environments with attention. These representations are subsequently fed into a learning-based Model Predictive Control (MPC) module. The MPC planner inherently accommodates physical constraints and different vehicle types and can provide interpretation by aligning learned parameters with explicit MPC elements. Evaluations conducted on the real-world V2XPnP-Seq dataset confirm that RiskMM achieves superior and robust performance in risk-aware trajectory planning, significantly enhancing the interpretability of the cooperative end-to-end driving framework. The codebase will be released to facilitate future research in this field.
comment: IEEE RA-L
♻ ☆ UltraDP: Generalizable Carotid Ultrasound Scanning with Force-Aware Diffusion Policy
Ultrasound scanning is a critical imaging technique for real-time, non-invasive diagnostics. However, variations in patient anatomy and complex human-in-the-loop interactions pose significant challenges for autonomous robotic scanning. Existing ultrasound scanning robots are commonly limited to relatively low generalization and inefficient data utilization. To overcome these limitations, we present UltraDP, a Diffusion-Policy-based method that receives multi-sensory inputs (ultrasound images, wrist camera images, contact wrench, and probe pose) and generates actions that are fit for multi-modal action distributions in autonomous ultrasound scanning of carotid artery. We propose a specialized guidance module to enable the policy to output actions that center the artery in ultrasound images. To ensure stable contact and safe interaction between the robot and the human subject, a hybrid force-impedance controller is utilized to drive the robot to track such trajectories. Also, we have built a large-scale training dataset for carotid scanning comprising 210 scans with 460k sample pairs from 21 volunteers of both genders. By exploring our guidance module and DP's strong generalization ability, UltraDP achieves a 95% success rate in transverse scanning on previously unseen subjects, demonstrating its effectiveness.
♻ ☆ Relative Pose Estimation for Nonholonomic Robot Formation with UWB-IO Measurements (Extended version)
This article studies the problem of distributed formation control for multiple robots by using onboard ultra wide band (UWB) distance and inertial odometer (IO) measurements. Although this problem has been widely studied, a fundamental limitation of most works is that they require each robot's pose and sensor measurements are expressed in a common reference frame. However, it is inapplicable for nonholonomic robot formations due to the practical difficulty of aligning IO measurements of individual robot in a common frame. To address this problem, firstly, a concurrent-learning based estimator is firstly proposed to achieve relative localization between neighboring robots in a local frame. Different from most relative localization methods in a global frame, both relative position and orientation in a local frame are estimated with only UWB ranging and IO measurements. Secondly, to deal with information loss caused by directed communication topology, a cooperative localization algorithm is introduced to estimate the relative pose to the leader robot. Thirdly, based on the theoretical results on relative pose estimation, a distributed formation tracking controller is proposed for nonholonomic robots. Both 3D and 2D real-world experiments conducted on aerial robots and grounded robots are provided to demonstrate the effectiveness of the proposed method.
comment: 17 pages, 26 figures
♻ ☆ Barrier-Riccati Synthesis for Nonlinear Safe Control with Expanded Region of Attraction
We present a Riccati-based framework for safety-critical nonlinear control that integrates the barrier states (BaS) methodology with the State-Dependent Riccati Equation (SDRE) approach. The BaS formulation embeds safety constraints into the system dynamics via auxiliary states, enabling safety to be treated as a control objective. To overcome the limited region of attraction in linear BaS controllers, we extend the framework to nonlinear systems using SDRE synthesis applied to the barrier-augmented dynamics and derive a matrix inequality condition that certifies forward invariance of a large region of attraction and guarantees asymptotic safe stabilization. The resulting controller is computed online via pointwise Riccati solutions. We validate the method on an unstable constrained system and cluttered quadrotor navigation tasks, demonstrating improved constraint handling, scalability, and robustness near safety boundaries. This framework offers a principled and computationally tractable solution for synthesizing nonlinear safe feedback in safety-critical environments.
♻ ☆ Statistically Assuring Safety of Control Systems using Ensembles of Safety Filters and Conformal Prediction
Safety assurance is a fundamental requirement for deploying learning-enabled autonomous systems. Hamilton-Jacobi (HJ) reachability analysis is a fundamental method for formally verifying safety and generating safe controllers. However, computing the HJ value function that characterizes the backward reachable set (BRS) of a set of user-defined failure states is computationally expensive, especially for high-dimensional systems, motivating the use of reinforcement learning approaches to approximate the value function. Unfortunately, a learned value function and its corresponding safe policy are not guaranteed to be correct. The learned value function evaluated at a given state may not be equal to the actual safety return achieved by following the learned safe policy. To address this challenge, we introduce a conformal prediction-based (CP) framework that bounds such uncertainty. We leverage CP to provide probabilistic safety guarantees when using learned HJ value functions and policies to prevent control systems from reaching failure states. Specifically, we use CP to calibrate the switching between the unsafe nominal controller and the learned HJ-based safe policy and to derive safety guarantees under this switched policy. We also investigate using an ensemble of independently trained HJ value functions as a safety filter and compare this ensemble approach to using individual value functions alone.
♻ ☆ Grounding LLMs For Robot Task Planning Using Closed-loop State Feedback
Planning algorithms decompose complex problems into intermediate steps that can be sequentially executed by robots to complete tasks. Recent works have employed Large Language Models (LLMs) for task planning, using natural language to generate robot policies in both simulation and real-world environments. LLMs like GPT-4 have shown promising results in generalizing to unseen tasks, but their applicability is limited due to hallucinations caused by insufficient grounding in the robot environment. The robustness of LLMs in task planning can be enhanced with environmental state information and feedback. In this paper, we introduce a novel approach to task planning that utilizes two separate LLMs for high-level planning and low-level control, improving task-related success rates and goal condition recall. Our algorithm, \textit{BrainBody-LLM}, draws inspiration from the human neural system, emulating its brain-body architecture by dividing planning across two LLMs in a structured, hierarchical manner. BrainBody-LLM implements a closed-loop feedback mechanism, enabling learning from simulator errors to resolve execution errors in complex settings. We demonstrate the successful application of BrainBody-LLM in the VirtualHome simulation environment, achieving a 29\% improvement in task-oriented success rates over competitive baselines with the GPT-4 backend. Additionally, we evaluate our algorithm on seven complex tasks using a realistic physics simulator and the Franka Research 3 robotic arm, comparing it with various state-of-the-art LLMs. Our results show advancements in the reasoning capabilities of recent LLMs, which enable them to learn from raw simulator/controller errors to correct plans, making them highly effective in robotic task planning.
comment: Preprint version. Accepted full paper available here: https://advanced.onlinelibrary.wiley.com/doi/10.1002/adrr.202500072
Robotics 51
☆ In-N-On: Scaling Egocentric Manipulation with in-the-wild and on-task Data
Egocentric videos are a valuable and scalable data source to learn manipulation policies. However, due to significant data heterogeneity, most existing approaches utilize human data for simple pre-training, which does not unlock its full potential. This paper first provides a scalable recipe for collecting and using egocentric data by categorizing human data into two categories: in-the-wild and on-task alongside with systematic analysis on how to use the data. We first curate a dataset, PHSD, which contains over 1,000 hours of diverse in-the-wild egocentric data and over 20 hours of on-task data directly aligned to the target manipulation tasks. This enables learning a large egocentric language-conditioned flow matching policy, Human0. With domain adaptation techniques, Human0 minimizes the gap between humans and humanoids. Empirically, we show Human0 achieves several novel properties from scaling human data, including language following of instructions from only human data, few-shot learning, and improved robustness using on-task data. Project website: https://xiongyicai.github.io/In-N-On/
comment: Project webpage: https://xiongyicai.github.io/In-N-On/
☆ MambaIO: Global-Coordinate Inertial Odometry for Pedestrians via Multi-Scale Frequency-Decoupled Modeling
Inertial Odometry (IO) enables real-time localization using only acceleration and angular velocity measurements from an Inertial Measurement Unit (IMU), making it a promising solution for localization in consumer-grade applications. Traditionally, IMU measurements in IO have been processed under two coordinate system paradigms: the body coordinate frame and the global coordinate frame, with the latter being widely adopted. However, recent studies in drone scenarios have demonstrated that the body frame can significantly improve localization accuracy, prompting a re-evaluation of the suitability of the global frame for pedestrian IO. To address this issue, this paper systematically evaluates the effectiveness of the global coordinate frame in pedestrian IO through theoretical analysis, qualitative inspection, and quantitative experiments. Building upon these findings, we further propose MambaIO, which decomposes IMU measurements into high-frequency and low-frequency components using a Laplacian pyramid. The low-frequency component is processed by a Mamba architecture to extract implicit contextual motion cues, while the high-frequency component is handled by a convolutional structure to capture fine-grained local motion details. Experiments on multiple public datasets show that MambaIO substantially reduces localization error and achieves state-of-the-art (SOTA) performance. To the best of our knowledge, this is the first application of the Mamba architecture to the inertial odometry task.
☆ Optimus-Q: Utilizing Federated Learning in Adaptive Robots for Intelligent Nuclear Power Plant Operations through Quantum Cryptography
The integration of advanced robotics in nuclear power plants (NPPs) presents a transformative opportunity to enhance safety, efficiency, and environmental monitoring in high-stakes environments. Our paper introduces the Optimus-Q robot, a sophisticated system designed to autonomously monitor air quality and detect contamination while leveraging adaptive learning techniques and secure quantum communication. Equipped with advanced infrared sensors, the Optimus-Q robot continuously streams real-time environmental data to predict hazardous gas emissions, including carbon dioxide (CO$_2$), carbon monoxide (CO), and methane (CH$_4$). Utilizing a federated learning approach, the robot collaborates with other systems across various NPPs to improve its predictive capabilities without compromising data privacy. Additionally, the implementation of Quantum Key Distribution (QKD) ensures secure data transmission, safeguarding sensitive operational information. Our methodology combines systematic navigation patterns with machine learning algorithms to facilitate efficient coverage of designated areas, thereby optimizing contamination monitoring processes. Through simulations and real-world experiments, we demonstrate the effectiveness of the Optimus-Q robot in enhancing operational safety and responsiveness in nuclear facilities. This research underscores the potential of integrating robotics, machine learning, and quantum technologies to revolutionize monitoring systems in hazardous environments.
☆ SRPO: Self-Referential Policy Optimization for Vision-Language-Action Models
Vision-Language-Action (VLA) models excel in robotic manipulation but are constrained by their heavy reliance on expert demonstrations, leading to demonstration bias and limiting performance. Reinforcement learning (RL) is a vital post-training strategy to overcome these limits, yet current VLA-RL methods, including group-based optimization approaches, are crippled by severe reward sparsity. Relying on binary success indicators wastes valuable information in failed trajectories, resulting in low training efficiency. To solve this, we propose Self-Referential Policy Optimization (SRPO), a novel VLA-RL framework. SRPO eliminates the need for external demonstrations or manual reward engineering by leveraging the model's own successful trajectories, generated within the current training batch, as a self-reference. This allows us to assign a progress-wise reward to failed attempts. A core innovation is the use of latent world representations to measure behavioral progress robustly. Instead of relying on raw pixels or requiring domain-specific fine-tuning, we utilize the compressed, transferable encodings from a world model's latent space. These representations naturally capture progress patterns across environments, enabling accurate, generalized trajectory comparison. Empirical evaluations on the LIBERO benchmark demonstrate SRPO's efficiency and effectiveness. Starting from a supervised baseline with 48.9% success, SRPO achieves a new state-of-the-art success rate of 99.2% in just 200 RL steps, representing a 103% relative improvement without any extra supervision. Furthermore, SRPO shows substantial robustness, achieving a 167% performance improvement on the LIBERO-Plus benchmark.
☆ UltraDP: Generalizable Carotid Ultrasound Scanning with Force-Aware Diffusion Policy
Ultrasound scanning is a critical imaging technique for real-time, non-invasive diagnostics. However, variations in patient anatomy and complex human-in-the-loop interactions pose significant challenges for autonomous robotic scanning. Existing ultrasound scanning robots are commonly limited to relatively low generalization and inefficient data utilization. To overcome these limitations, we present UltraDP, a Diffusion-Policy-based method that receives multi-sensory inputs (ultrasound images, wrist camera images, contact wrench, and probe pose) and generates actions that are fit for multi-modal action distributions in autonomous ultrasound scanning of carotid artery. We propose a specialized guidance module to enable the policy to output actions that center the artery in ultrasound images. To ensure stable contact and safe interaction between the robot and the human subject, a hybrid force-impedance controller is utilized to drive the robot to track such trajectories. Also, we have built a large-scale training dataset for carotid scanning comprising 210 scans with 460k sample pairs from 21 volunteers of both genders. By exploring our guidance module and DP's strong generalization ability, UltraDP achieves a 95% success rate in transverse scanning on previously unseen subjects, demonstrating its effectiveness.
☆ NMPC-based Motion Planning with Adaptive Weighting for Dynamic Object Interception
Catching fast-moving objects serves as a benchmark for robotic agility, posing significant coordination challenges for cooperative manipulator systems holding a catcher, particularly due to inherent closed-chain constraints. This paper presents a nonlinear model predictive control (MPC)-based motion planner that bridges high-level interception planning with real-time joint space control, enabling dynamic object interception for systems comprising two cooperating arms. We introduce an Adaptive- Terminal (AT) MPC formulation featuring cost shaping, which contrasts with a simpler Primitive-Terminal (PT) approach relying heavily on terminal penalties for rapid convergence. The proposed AT formulation is shown to effectively mitigate issues related to actuator power limit violations frequently encountered with the PT strategy, yielding trajectories and significantly reduced control effort. Experimental results on a robotic platform with two cooperative arms, demonstrating excellent real time performance, with an average planner cycle computation time of approximately 19 ms-less than half the 40 ms system sampling time. These results indicate that the AT formulation achieves significantly improved motion quality and robustness with minimal computational overhead compared to the PT baseline, making it well-suited for dynamic, cooperative interception tasks.
comment: This work has been submitted to the IFAC World Congress for possible publication. Under review
☆ Decentralized Gaussian Process Classification and an Application in Subsea Robotics IROS 2025
Teams of cooperating autonomous underwater vehicles (AUVs) rely on acoustic communication for coordination, yet this communication medium is constrained by limited range, multi-path effects, and low bandwidth. One way to address the uncertainty associated with acoustic communication is to learn the communication environment in real-time. We address the challenge of a team of robots building a map of the probability of communication success from one location to another in real-time. This is a decentralized classification problem -- communication events are either successful or unsuccessful -- where AUVs share a subset of their communication measurements to build the map. The main contribution of this work is a rigorously derived data sharing policy that selects measurements to be shared among AUVs. We experimentally validate our proposed sharing policy using real acoustic communication data collected from teams of Virginia Tech 690 AUVs, demonstrating its effectiveness in underwater environments.
comment: 8 pages, 8 figures, IROS 2025 conference
☆ PCARNN-DCBF: Minimal-Intervention Geofence Enforcement for Ground Vehicles
Runtime geofencing for ground vehicles is rapidly emerging as a critical technology for enforcing Operational Design Domains (ODDs). However, existing solutions struggle to reconcile high-fidelity learning with the structural requirements of verifiable control. We address this by introducing PCARNN-DCBF, a novel pipeline integrating a Physics-encoded Control-Affine Residual Neural Network with a preview-based Discrete Control Barrier Function. Unlike generic learned models, PCARNN explicitly preserves the control-affine structure of vehicle dynamics, ensuring the linearity required for reliable optimization. This enables the DCBF to enforce polygonal keep-in constraints via a real-time Quadratic Program (QP) that handles high relative degree and mitigates actuator saturation. Experiments in CARLA across electric and combustion platforms demonstrate that this structure-preserving approach significantly outperforms analytical and unstructured neural baselines.
☆ Theoretical Closed-loop Stability Bounds for Dynamical System Coupled with Diffusion Policies
Diffusion Policy has shown great performance in robotic manipulation tasks under stochastic perturbations, due to its ability to model multimodal action distributions. Nonetheless, its reliance on a computationally expensive reverse-time diffusion (denoising) process, for action inference, makes it challenging to use for real-time applications where quick decision-making is mandatory. This work studies the possibility of conducting the denoising process only partially before executing an action, allowing the plant to evolve according to its dynamics in parallel to the reverse-time diffusion dynamics ongoing on the computer. In a classical diffusion policy setting, the plant dynamics are usually slow and the two dynamical processes are uncoupled. Here, we investigate theoretical bounds on the stability of closed-loop systems using diffusion policies when the plant dynamics and the denoising dynamics are coupled. The contribution of this work gives a framework for faster imitation learning and a metric that yields if a controller will be stable based on the variance of the demonstrations.
comment: 5 pages, 3 figures
☆ Discovering Optimal Natural Gaits of Dissipative Systems via Virtual Energy Injection
Legged robots offer several advantages when navigating unstructured environments, but they often fall short of the efficiency achieved by wheeled robots. One promising strategy to improve their energy economy is to leverage their natural (unactuated) dynamics using elastic elements. This work explores that concept by designing energy-optimal control inputs through a unified, multi-stage framework. It starts with a novel energy injection technique to identify passive motion patterns by harnessing the system's natural dynamics. This enables the discovery of passive solutions even in systems with energy dissipation caused by factors such as friction or plastic collisions. Building on these passive solutions, we then employ a continuation approach to derive energy-optimal control inputs for the fully actuated, dissipative robotic system. The method is tested on simulated models to demonstrate its applicability in both single- and multi-legged robotic systems. This analysis provides valuable insights into the design and operation of elastic legged robots, offering pathways to improve their efficiency and adaptability by exploiting the natural system dynamics.
comment: Preprint Version, IEEE Robotics and Automation Letters (RA-L), accepted November 2025
☆ RRT*former: Environment-Aware Sampling-Based Motion Planning using Transformer IROS 2025
We investigate the sampling-based optimal path planning problem for robotics in complex and dynamic environments. Most existing sampling-based algorithms neglect environmental information or the information from previous samples. Yet, these pieces of information are highly informative, as leveraging them can provide better heuristics when sampling the next state. In this paper, we propose a novel sampling-based planning algorithm, called \emph{RRT*former}, which integrates the standard RRT* algorithm with a Transformer network in a novel way. Specifically, the Transformer is used to extract features from the environment and leverage information from previous samples to better guide the sampling process. Our extensive experiments demonstrate that, compared to existing sampling-based approaches such as RRT*, Neural RRT*, and their variants, our algorithm achieves considerable improvements in both the optimality of the path and sampling efficiency. The code for our implementation is available on https://github.com/fengmingyang666/RRTformer.
comment: Accepted to IROS 2025
☆ Platform-Agnostic Reinforcement Learning Framework for Safe Exploration of Cluttered Environments with Graph Attention
Autonomous exploration of obstacle-rich spaces requires strategies that ensure efficiency while guaranteeing safety against collisions with obstacles. This paper investigates a novel platform-agnostic reinforcement learning framework that integrates a graph neural network-based policy for next-waypoint selection, with a safety filter ensuring safe mobility. Specifically, the neural network is trained using reinforcement learning through the Proximal Policy Optimization (PPO) algorithm to maximize exploration efficiency while minimizing safety filter interventions. Henceforth, when the policy proposes an infeasible action, the safety filter overrides it with the closest feasible alternative, ensuring consistent system behavior. In addition, this paper introduces a reward function shaped by a potential field that accounts for both the agent's proximity to unexplored regions and the expected information gain from reaching them. The proposed framework combines the adaptability of reinforcement learning-based exploration policies with the reliability provided by explicit safety mechanisms. This feature plays a key role in enabling the deployment of learning-based policies on robotic platforms operating in real-world environments. Extensive evaluations in both simulations and experiments performed in a lab environment demonstrate that the approach achieves efficient and safe exploration in cluttered spaces.
comment: 8 pages, 6 figures, submitted to the 2026 IEEE International Conference on Robotics & Automation
☆ Fast Post-Hoc Confidence Fusion for 3-Class Open-Set Aerial Object Detection
Developing reliable UAV navigation systems requires robust air-to-air object detectors capable of distinguishing between objects seen during training and previously unseen objects. While many methods address closed-set detection and achieve high-confidence recognition of in-domain (ID) targets, they generally do not tackle open-set detection, which requires simultaneous handling of both ID and out-of-distribution (OOD) objects. Existing open-set approaches typically rely on a single uncertainty score with thresholding, limiting flexibility and often conflating OOD objects with background clutter. In contrast, we propose a lightweight, model-agnostic post-processing framework that explicitly separates background from unknown objects while preserving the base detector's performance. Our approach extends open-set detection beyond binary ID/OOD classification to real-time three-way classification among ID targets, OOD objects, and background. To this end, we employ a fusion scheme that aggregates multiple confidence estimates and per-detection features using a compact multilayer perceptron (MLP). Incorporating different logit variants into the MLP consistently enhances performance across both binary and three-class classification without compromising throughput. Extensive ablation and comparative experiments confirm that our method surpasses threshold-based baselines in two-class classification by an average of 2.7% AUROC, while retaining or improving open-set mAP. Furthermore, our study uniquely enables robust three-class classification, a critical capability for safe UAV navigation, where OOD objects must be actively avoided and background regions safely ignored. Comparative analysis highlights that our method surpasses competitive techniques in AUROC across datasets, while improving closed-set mAP by up to 9 points, an 18% relative gain.
☆ C2F-Space: Coarse-to-Fine Space Grounding for Spatial Instructions using Vision-Language Models
Space grounding refers to localizing a set of spatial references described in natural language instructions. Traditional methods often fail to account for complex reasoning -- such as distance, geometry, and inter-object relationships -- while vision-language models (VLMs), despite strong reasoning abilities, struggle to produce a fine-grained region of outputs. To overcome these limitations, we propose C2F-Space, a novel coarse-to-fine space-grounding framework that (i) estimates an approximated yet spatially consistent region using a VLM, then (ii) refines the region to align with the local environment through superpixelization. For the coarse estimation, we design a grid-based visual-grounding prompt with a propose-validate strategy, maximizing VLM's spatial understanding and yielding physically and semantically valid canonical region (i.e., ellipses). For the refinement, we locally adapt the region to surrounding environment without over-relaxed to free space. We construct a new space-grounding benchmark and compare C2F-Space with five state-of-the-art baselines using success rate and intersection-over-union. Our C2F-Space significantly outperforms all baselines. Our ablation study confirms the effectiveness of each module in the two-step process and their synergistic effect of the combined framework. We finally demonstrate the applicability of C2F-Space to simulated robotic pick-and-place tasks.
comment: 16 pages, 12 figures
☆ MSA - Technique for Stiffness Modeling of Manipulators with Complex and Hybrid Structures
The paper presents a systematic approach for stiffness modeling of manipulators with complex and hybrid structures using matrix structural analysis. In contrast to previous results, it is suitable for mixed architectures containing closed-loops, flexible links, rigid connections, passive and elastic joints with external loadings and preloadings. The proposed approach produces the Cartesian stiffness matrices in a semi-analytical manner. It presents the manipulator stiffness model as a set of conventional equations describing the link elasticities that are supplemented by a set of constraints describing connections between links. Its allows user straightforward aggregation of stiffness model equations avoiding traditional column/row merging procedures in the extended stiffness matrix. Advantages of this approach are illustrated by stiffness analysis of NaVaRo manipulator.
☆ Optimizing Robot Positioning Against Placement Inaccuracies: A Study on the Fanuc CRX10iA/L
This study presents a methodology for determining the optimal base placement of a Fanuc CRX10iA/L collaborative robot for a desired trajectory corresponding to an industrial task. The proposed method uses a particle swarm optimization algorithm that explores the search space to find positions for performing the trajectory. An $α$-shape algorithm is then used to draw the borders of the feasibility areas, and the largest circle inscribed is calculated from the Voronoi diagrams. The aim of this approach is to provide a robustness criterion in the context of robot placement inaccuracies that may be encountered, for example, if the robot is placed on a mobile base when the system is deployed by an operator. The approach developed uses an inverse kinematics model to evaluate all initial configurations, then moves the robot end-effector along the reference trajectory using the Jacobian matrix and assigns a score to the attempt. For the Fanuc CRX10iA/L robot, there can be up to 16 solutions to the inverse kinematics model. The calculation of these solutions is not trivial and requires a specific study that planning tools such as MoveIt cannot fully take into account. Additionally, the optimization process must consider constraints such as joint limits, singularities, and workspace limitations to ensure feasible and efficient trajectory execution.
☆ Path Planning through Multi-Agent Reinforcement Learning in Dynamic Environments
Path planning in dynamic environments is a fundamental challenge in intelligent transportation and robotics, where obstacles and conditions change over time, introducing uncertainty and requiring continuous adaptation. While existing approaches often assume complete environmental unpredictability or rely on global planners, these assumptions limit scalability and practical deployment in real-world settings. In this paper, we propose a scalable, region-aware reinforcement learning (RL) framework for path planning in dynamic environments. Our method builds on the observation that environmental changes, although dynamic, are often localized within bounded regions. To exploit this, we introduce a hierarchical decomposition of the environment and deploy distributed RL agents that adapt to changes locally. We further propose a retraining mechanism based on sub-environment success rates to determine when policy updates are necessary. Two training paradigms are explored: single-agent Q-learning and multi-agent federated Q-learning, where local Q-tables are aggregated periodically to accelerate the learning process. Unlike prior work, we evaluate our methods in more realistic settings, where multiple simultaneous obstacle changes and increasing difficulty levels are present. Results show that the federated variants consistently outperform their single-agent counterparts and closely approach the performance of A* Oracle while maintaining shorter adaptation times and robust scalability. Although initial training remains time-consuming in large environments, our decentralized framework eliminates the need for a global planner and lays the groundwork for future improvements using deep RL and flexible environment decomposition.
☆ Look, Zoom, Understand: The Robotic Eyeball for Embodied Perception
In embodied AI perception systems, visual perception should be active: the goal is not to passively process static images, but to actively acquire more informative data within pixel and spatial budget constraints. Existing vision models and fixed RGB-D camera systems fundamentally fail to reconcile wide-area coverage with fine-grained detail acquisition, severely limiting their efficacy in open-world robotic applications. To address this issue, we propose EyeVLA, a robotic eyeball for active visual perception that can take proactive actions based on instructions, enabling clear observation of fine-grained target objects and detailed information across a wide spatial extent. EyeVLA discretizes action behaviors into action tokens and integrates them with vision-language models (VLMs) that possess strong open-world understanding capabilities, enabling joint modeling of vision, language, and actions within a single autoregressive sequence. By using the 2D bounding box coordinates to guide the reasoning chain and applying reinforcement learning to refine the viewpoint selection policy, we transfer the open-world scene understanding capability of the VLM to a vision language action (VLA) policy using only minimal real-world data. Experiments show that our system efficiently performs instructed scenes in real-world environments and actively acquires more accurate visual information through instruction-driven actions of rotation and zoom, thereby achieving strong environmental perception capabilities. EyeVLA introduces a novel robotic vision system that leverages detailed and spatially rich, large-scale embodied data, and actively acquires highly informative visual observations for downstream embodied tasks.
☆ Behavior Trees vs Executable Ontologies: a Comparative Analysis of Robot Control Paradigms
This paper compares two distinct approaches to modeling robotic behavior: imperative Behavior Trees (BTs) and declarative Executable Ontologies (EO), implemented through the boldsea framework. BTs structure behavior hierarchically using control-flow, whereas EO represents the domain as a temporal, event-based semantic graph driven by dataflow rules. We demonstrate that EO achieves comparable reactivity and modularity to BTs through a fundamentally different architecture: replacing polling-based tick execution with event-driven state propagation. We propose that EO offers an alternative framework, moving from procedural programming to semantic domain modeling, to address the semantic-process gap in traditional robotic control. EO supports runtime model modification, full temporal traceability, and a unified representation of data, logic, and interface - features that are difficult or sometimes impossible to achieve with BTs, although BTs excel in established, predictable scenarios. The comparison is grounded in a practical mobile manipulation task. This comparison highlights the respective operational strengths of each approach in dynamic, evolving robotic systems.
comment: 22 pages, 8 figures
☆ Symmetry-Breaking in Multi-Agent Navigation: Winding Number-Aware MPC with a Learned Topological Strategy
We address the fundamental challenge of resolving symmetry-induced deadlocks in distributed multi-agent navigation by proposing a new hierarchical navigation method. When multiple agents interact, it is inherently difficult for them to autonomously break the symmetry of deciding how to pass each other. To tackle this problem, we introduce an approach that quantifies cooperative symmetry-breaking strategies using a topological invariant called the winding number, and learns the strategies themselves through reinforcement learning. Our method features a hierarchical policy consisting of a learning-based Planner, which plans topological cooperative strategies, and a model-based Controller, which executes them. Through reinforcement learning, the Planner learns to produce two types of parameters for the Controller: one is the topological cooperative strategy represented by winding numbers, and the other is a set of dynamic weights that determine which agent interaction to prioritize in dense scenarios where multiple agents cross simultaneously. The Controller then generates collision-free and efficient motions based on the strategy and weights provided by the Planner. This hierarchical structure combines the flexible decision-making ability of learning-based methods with the reliability of model-based approaches. Simulation and real-world robot experiments demonstrate that our method outperforms existing baselines, particularly in dense environments, by efficiently avoiding collisions and deadlocks while achieving superior navigation performance. The code for the experiments is available at https://github.com/omron-sinicx/WNumMPC.
comment: 11 pages, 5 figures
☆ Modelling and Model-Checking a ROS2 Multi-Robot System using Timed Rebeca
Model-based development enables quicker prototyping, earlier experimentation and validation of design intents. For a multi-agent system with complex asynchronous interactions and concurrency, formal verification, model-checking in particular, offers an automated mechanism for verifying desired properties. Timed Rebeca is an actor-based modelling language supporting reactive, concurrent and time semantics, accompanied with a model-checking compiler. These capabilities allow using Timed Rebeca to correctly model ROS2 node topographies, recurring physical signals, motion primitives and other timed and time-convertible behaviors. The biggest challenges in modelling and verifying a multi-robot system lie in abstracting complex information, bridging the gap between a discrete model and a continuous system and compacting the state space, while maintaining the model's accuracy. We develop different discretization strategies for different kinds of information, identifying the 'enough' thresholds of abstraction, and applying efficient optimization techniques to boost computations. With this work we demonstrate how to use models to design and verify a multi-robot system, how to discretely model a continuous system to do model-checking efficiently, and the round-trip engineering flow between the model and the implementation. The released Rebeca and ROS2 codes can serve as a foundation for modelling multiple autonomous robots systems.
☆ A Class of Dual-Frame Passively-Tilting Fully-Actuated Hexacopter
This paper proposed a novel fully-actuated hexacopter. It features a dual-frame passive tilting structure and achieves independent control of translational motion and attitude with minimal actuators. Compared to previous fully-actuated UAVs, it liminates internal force cancellation, resulting in higher flight efficiency and endurance under equivalent payload conditions. Based on the dynamic model of fully-actuated hexacopter, a full-actuation controller is designed to achieve efficient and stable control. Finally, simulation is conducted, validating the superior fully-actuated motion capability of fully-actuated hexacopter and the effectiveness of the proposed control strategy.
☆ VIRAL: Visual Sim-to-Real at Scale for Humanoid Loco-Manipulation
A key barrier to the real-world deployment of humanoid robots is the lack of autonomous loco-manipulation skills. We introduce VIRAL, a visual sim-to-real framework that learns humanoid loco-manipulation entirely in simulation and deploys it zero-shot to real hardware. VIRAL follows a teacher-student design: a privileged RL teacher, operating on full state, learns long-horizon loco-manipulation using a delta action space and reference state initialization. A vision-based student policy is then distilled from the teacher via large-scale simulation with tiled rendering, trained with a mixture of online DAgger and behavior cloning. We find that compute scale is critical: scaling simulation to tens of GPUs (up to 64) makes both teacher and student training reliable, while low-compute regimes often fail. To bridge the sim-to-real gap, VIRAL combines large-scale visual domain randomization over lighting, materials, camera parameters, image quality, and sensor delays--with real-to-sim alignment of the dexterous hands and cameras. Deployed on a Unitree G1 humanoid, the resulting RGB-based policy performs continuous loco-manipulation for up to 54 cycles, generalizing to diverse spatial and appearance variations without any real-world fine-tuning, and approaching expert-level teleoperation performance. Extensive ablations dissect the key design choices required to make RGB-based humanoid loco-manipulation work in practice.
comment: Project website: https://viral-humanoid.github.io/
☆ Eq.Bot: Enhance Robotic Manipulation Learning via Group Equivariant Canonicalization
Robotic manipulation systems are increasingly deployed across diverse domains. Yet existing multi-modal learning frameworks lack inherent guarantees of geometric consistency, struggling to handle spatial transformations such as rotations and translations. While recent works attempt to introduce equivariance through bespoke architectural modifications, these methods suffer from high implementation complexity, computational cost, and poor portability. Inspired by human cognitive processes in spatial reasoning, we propose Eq.Bot, a universal canonicalization framework grounded in SE(2) group equivariant theory for robotic manipulation learning. Our framework transforms observations into a canonical space, applies an existing policy, and maps the resulting actions back to the original space. As a model-agnostic solution, Eq.Bot aims to endow models with spatial equivariance without requiring architectural modifications. Extensive experiments demonstrate the superiority of Eq.Bot under both CNN-based (e.g., CLIPort) and Transformer-based (e.g., OpenVLA-OFT) architectures over existing methods on various robotic manipulation tasks, where the most significant improvement can reach 50.0%.
comment: 12 pages, 4 figures and 3 tables
☆ Nonholonomic Robot Parking by Feedback -- Part I: Modular Strict CLF Designs
It has been known in the robotics literature since about 1995 that, in polar coordinates, the nonholonomic unicycle is asymptotically stabilizable by smooth feedback, even globally. We introduce a modular design framework that selects the forward velocity to decouple the radial coordinate, allowing the steering subsystem to be stabilized independently. Within this structure, we develop families of feedback laws using passivity, backstepping, and integrator forwarding. Each law is accompanied by a strict control Lyapunov function, including barrier variants that enforce angular constraints. These strict CLFs provide constructive class KL convergence estimates and enable eigenvalue assignment at the target equilibrium. The framework generalizes and extends prior modular and nonmodular approaches, while preparing the ground for inverse optimal and adaptive redesigns in the sequel paper.
☆ Painted Heart Beats ICRA 2025
In this work we present AURA, a framework for synergistic human-artist painting. We developed a robot arm that collaboratively paints with a human artist. The robot has an awareness of the artist's heartbeat through the EmotiBit sensor, which provides the arousal levels of the painter. Given the heartbeat detected, the robot decides to increase proximity to the artist's workspace or retract. If a higher heartbeat is detected, which is associated with increased arousal in human artists, the robot will move away from that area of the canvas. If the artist's heart rate is detected as neutral, indicating the human artist's baseline state, the robot will continue its painting actions across the entire canvas. We also demonstrate and propose alternative robot-artist interactions using natural language and physical touch. This work combines the biometrics of a human artist to inform fluent artistic interactions.
comment: 4 pages, 2 figures, ICRA 2025
☆ Learning Human-Like RL Agents Through Trajectory Optimization With Action Quantization NeurIPS 2025
Human-like agents have long been one of the goals in pursuing artificial intelligence. Although reinforcement learning (RL) has achieved superhuman performance in many domains, relatively little attention has been focused on designing human-like RL agents. As a result, many reward-driven RL agents often exhibit unnatural behaviors compared to humans, raising concerns for both interpretability and trustworthiness. To achieve human-like behavior in RL, this paper first formulates human-likeness as trajectory optimization, where the objective is to find an action sequence that closely aligns with human behavior while also maximizing rewards, and adapts the classic receding-horizon control to human-like learning as a tractable and efficient implementation. To achieve this, we introduce Macro Action Quantization (MAQ), a human-like RL framework that distills human demonstrations into macro actions via Vector-Quantized VAE. Experiments on D4RL Adroit benchmarks show that MAQ significantly improves human-likeness, increasing trajectory similarity scores, and achieving the highest human-likeness rankings among all RL agents in the human evaluation study. Our results also demonstrate that MAQ can be easily integrated into various off-the-shelf RL algorithms, opening a promising direction for learning human-like RL agents. Our code is available at https://rlg.iis.sinica.edu.tw/papers/MAQ.
comment: Accepted by the Thirty-Ninth Annual Conference on Neural Information Processing Systems (NeurIPS 2025)
☆ Lie Group Control Architectures for UAVs: a Comparison of SE2(3)-Based Approaches in Simulation and Hardware
This paper presents the integration and experimental validation of advanced control strategies for quadcopters based on Lie groups. We build upon recent theoretical developments on SE2(3)-based controllers and introduce a novel SE2(3) model predictive controller (MPC) that combines the predictive capabilities and constraint-handling of optimal control with the geometric properties of Lie group formulations. We evaluated this MPC against a state-of-the-art SE2(3)-based LQR approach and obtained comparable performance in simulation. Both controllers where also deployed on the Quanser QDrone platform and compared to each other and an industry standard control architecture. Results show that the SE_2(3) MPC achieves superior trajectory tracking performance and robustness across a range of scenarios. This work demonstrates the practical effectiveness of Lie group-based controllers and offers comparative insights into their impact on system behaviour and real-time performance
☆ Communication-Aware Asynchronous Distributed Trajectory Optimization for UAV Swarm
Distributed optimization offers a promising paradigm for trajectory planning in Unmanned Aerial Vehicle (UAV) swarms, yet its deployment in communication-constrained environments remains challenging due to unreliable links and limited data exchange. This paper addresses this issue via a two-tier architecture explicitly designed for operation under communication constraints. We develop a Communication-Aware Asynchronous Distributed Trajectory Optimization (CA-ADTO) framework that integrates Parameterized Differential Dynamic Programming (PDDP) for local trajectory optimization of individual UAVs with an asynchronous Alternating Direction Method of Multipliers (async-ADMM) for swarm-level coordination. The proposed architecture enables fully distributed optimization while substantially reducing communication overhead, making it suitable for real-world scenarios in which reliable connectivity cannot be guaranteed. The method is particularly effective in handling nonlinear dynamics and spatio-temporal coupling under communication constraints.
☆ An Alignment-Based Approach to Learning Motions from Demonstrations
Learning from Demonstration (LfD) has shown to provide robots with fundamental motion skills for a variety of domains. Various branches of LfD research (e.g., learned dynamical systems and movement primitives) can generally be classified into ''time-dependent'' or ''time-independent'' systems. Each provides fundamental benefits and drawbacks -- time-independent methods cannot learn overlapping trajectories, while time-dependence can result in undesirable behavior under perturbation. This paper introduces Cluster Alignment for Learned Motions (CALM), an LfD framework dependent upon an alignment with a representative ''mean" trajectory of demonstrated motions rather than pure time- or state-dependence. We discuss the convergence properties of CALM, introduce an alignment technique able to handle the shifts in alignment possible under perturbation, and utilize demonstration clustering to generate multi-modal behavior. We show how CALM mitigates the drawbacks of time-dependent and time-independent techniques on 2D datasets and implement our system on a 7-DoF robot learning tasks in three domains.
comment: 8 pages, 8 figures, originally published in the IEEE Robotics and Automation Letters
☆ I've Changed My Mind: Robots Adapting to Changing Human Goals during Collaboration
For effective human-robot collaboration, a robot must align its actions with human goals, even as they change mid-task. Prior approaches often assume fixed goals, reducing goal prediction to a one-time inference. However, in real-world scenarios, humans frequently shift goals, making it challenging for robots to adapt without explicit communication. We propose a method for detecting goal changes by tracking multiple candidate action sequences and verifying their plausibility against a policy bank. Upon detecting a change, the robot refines its belief in relevant past actions and constructs Receding Horizon Planning (RHP) trees to actively select actions that assist the human while encouraging Differentiating Actions to reveal their updated goal. We evaluate our approach in a collaborative cooking environment with up to 30 unique recipes and compare it to three comparable human goal prediction algorithms. Our method outperforms all baselines, quickly converging to the correct goal after a switch, reducing task completion time, and improving collaboration efficiency.
comment: Accepted to RA-L
☆ Gimballed Rotor Mechanism for Omnidirectional Quadrotors
This paper presents the design of a gimballed rotor mechanism as a modular and efficient solution for constructing omnidirectional quadrotors. Unlike conventional quadrotors, which are underactuated, this class of quadrotors achieves full actuation, enabling independent motion in all six degrees of freedom. While existing omnidirectional quadrotor designs often require significant structural modifications, the proposed gimballed rotor system maintains a lightweight and easy-to-integrate design by incorporating servo motors within the rotor platforms, allowing independent tilting of each rotor without major alterations to the central structure of a quadrotor. To accommodate this unconventional design, we develop a new control allocation scheme in PX4 Autopilot and present successful flight tests, validating the effectiveness of the proposed approach.
comment: 6 pages, 7 figures, CASE 2025
♻ ☆ Inverse k-visibility for RSSI-based Indoor Geometric Mapping
In recent years, the increased availability of WiFi in indoor environments has gained interest in the robotics community to utilize WiFi signals for indoor simultaneous localization and mapping algorithms. This paper discusses the challenges of achieving high-accuracy geometric map building using WiFi signals. The paper introduces the concept of inverse k-visibility, developed from the k-visibility algorithm, to identify free space in an unknown environment, used for planning, navigation, and obstacle avoidance. Comprehensive experiments, including those utilizing single and multiple RSSI signals, were conducted in both simulated and real-world environments to demonstrate the robustness of the proposed algorithm. Additionally, a detailed analysis comparing the resulting maps with ground-truth LiDAR-based maps is provided to highlight the algorithm's accuracy and reliability.
♻ ☆ Optimizing the flight path for a scouting Uncrewed Aerial Vehicle
Post-disaster situations pose unique navigation challenges. One of those challenges is the unstructured nature of the environment, which makes it hard to layout paths for rescue vehicles. We propose the use of Uncrewed Aerial Vehicle (UAV) in such scenario to perform reconnaissance across the environment. To accomplish this, we propose an optimization-based approach to plan a path for the UAV at optimal height where the sensors of the UAV can cover the most area and collect data with minimum uncertainty.
comment: This paper was prepared as an end of semester project for ME8710: Engineering Optimization, Clemson University. Consists of 7 pages and 8 figures
♻ ☆ Class-Aware PillarMix: Can Mixed Sample Data Augmentation Enhance 3D Object Detection with Radar Point Clouds? IROS 2025
Due to the significant effort required for data collection and annotation in 3D perception tasks, mixed sample data augmentation (MSDA) has been widely studied to generate diverse training samples by mixing existing data. Recently, many MSDA techniques have been developed for point clouds, but they mainly target LiDAR data, leaving their application to radar point clouds largely unexplored. In this paper, we examine the feasibility of applying existing MSDA methods to radar point clouds and identify several challenges in adapting these techniques. These obstacles stem from the radar's irregular angular distribution, deviations from a single-sensor polar layout in multi-radar setups, and point sparsity. To address these issues, we propose Class-Aware PillarMix (CAPMix), a novel MSDA approach that applies MixUp at the pillar level in 3D point clouds, guided by class labels. Unlike methods that rely a single mix ratio to the entire sample, CAPMix assigns an independent ratio to each pillar, boosting sample diversity. To account for the density of different classes, we use class-specific distributions: for dense objects (e.g., large vehicles), we skew ratios to favor points from another sample, while for sparse objects (e.g., pedestrians), we sample more points from the original. This class-aware mixing retains critical details and enriches each sample with new information, ultimately generating more diverse training data. Experimental results demonstrate that our method not only significantly boosts performance but also outperforms existing MSDA approaches across two datasets (Bosch Street and K-Radar). We believe that this straightforward yet effective approach will spark further investigation into MSDA techniques for radar data.
comment: 8 pages, 6 figures, 4 tables, accepted to 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2025). Code: https://github.com/boschresearch/CAPMIX
♻ ☆ Robust Adaptive Safe Robotic Grasping with Tactile Sensing
Robotic grasping requires safe force interaction to prevent a grasped object from being damaged or slipping out of the hand. In this vein, this paper proposes an integrated framework for grasping with formal safety guarantees based on Control Barrier Functions. We first design contact force and force closure constraints, which are enforced by a safety filter to accomplish safe grasping with finger force control. For sensory feedback, we develop a technique to estimate contact point, force, and torque from tactile sensors at each finger. We verify the framework with various safety filters in a numerical simulation under a two-finger grasping scenario. We then experimentally validate the framework by grasping multiple objects, including fragile lab glassware, in a real robotic setup, showing that safe grasping can be successfully achieved in the real world. We evaluate the performance of each safety filter in the context of safety violation and conservatism, and find that disturbance observer-based control barrier functions provide superior performance for safety guarantees with minimum conservatism.
comment: This paper was accepted to ECC 2025. The demonstration video is available at https://youtu.be/Cuj47mkXRdg
♻ ☆ RIZE: Adaptive Regularization for Imitation Learning
We propose a novel Inverse Reinforcement Learning (IRL) method that mitigates the rigidity of fixed reward structures and the limited flexibility of implicit reward regularization. Building on the Maximum Entropy IRL framework, our approach incorporates a squared temporal-difference (TD) regularizer with adaptive targets that evolve dynamically during training, thereby imposing adaptive bounds on recovered rewards and promoting robust decision-making. To capture richer return information, we integrate distributional RL into the learning process. Empirically, our method achieves expert-level performance on complex MuJoCo and Adroit environments, surpassing baseline methods on the Humanoid-v2 task with limited expert demonstrations. Extensive experiments and ablation studies further validate the effectiveness of the approach and provide insights into reward dynamics in imitation learning. Our source code is available at https://github.com/adibka/RIZE.
comment: Camera-ready version. Published in Transactions on Machine Learning Research (2025). Official version: https://openreview.net/forum?id=a6DWqXJZCZ
♻ ☆ U2UData+: A Scalable Swarm UAVs Autonomous Flight Dataset for Embodied Long-horizon Tasks AAAI26
Swarm UAV autonomous flight for Embodied Long-Horizon (ELH) tasks is crucial for advancing the low-altitude economy. However, existing methods focus only on specific basic tasks due to dataset limitations, failing in real-world deployment for ELH tasks. ELH tasks are not mere concatenations of basic tasks, requiring handling long-term dependencies, maintaining embodied persistent states, and adapting to dynamic goal shifts. This paper presents U2UData+, the first large-scale swarm UAV autonomous flight dataset for ELH tasks and the first scalable swarm UAV data online collection and algorithm closed-loop verification platform. The dataset is captured by 15 UAVs in autonomous collaborative flights for ELH tasks, comprising 12 scenes, 720 traces, 120 hours, 600 seconds per trajectory, 4.32M LiDAR frames, and 12.96M RGB frames. This dataset also includes brightness, temperature, humidity, smoke, and airflow values covering all flight routes. The platform supports the customization of simulators, UAVs, sensors, flight algorithms, formation modes, and ELH tasks. Through a visual control window, this platform allows users to collect customized datasets through one-click deployment online and to verify algorithms by closed-loop simulation. U2UData+ also introduces an ELH task for wildlife conservation and provides comprehensive benchmarks with 9 SOTA models. U2UData+ can be found at https://fengtt42.github.io/U2UData-2/.
comment: Accepted by AAAI26
♻ ☆ APEX: Action Priors Enable Efficient Exploration for Robust Motion Tracking on Legged Robots
Learning natural, animal-like locomotion from demonstrations has become a core paradigm in legged robotics. Despite the recent advancements in motion tracking, most existing methods demand extensive tuning and rely on reference data during deployment, limiting adaptability. We present APEX (Action Priors enable Efficient Exploration), a plug-and-play extension to state-of-the-art motion tracking algorithms that eliminates any dependence on reference data during deployment, improves sample efficiency, and reduces parameter tuning effort. APEX integrates expert demonstrations directly into reinforcement learning (RL) by incorporating decaying action priors, which initially bias exploration toward expert demonstrations but gradually allow the policy to explore independently. This is combined with a multi-critic framework that balances task performance with motion style. Moreover, APEX enables a single policy to learn diverse motions and transfer reference-like styles across different terrains and velocities, while remaining robust to variations in reward design. We validate the effectiveness of our method through extensive experiments in both simulation and on a Unitree Go2 robot. By leveraging demonstrations to guide exploration during RL training, without imposing explicit bias toward them, APEX enables legged robots to learn with greater stability, efficiency, and generalization. We believe this approach paves the way for guidance-driven RL to boost natural skill acquisition in a wide array of robotic tasks, from locomotion to manipulation. Website and code: https://marmotlab.github.io/APEX/.
comment: 9 pages; Previously this version appeared as arXiv:2511.09091, which was submitted as a new work by accident
♻ ☆ APEX: Action Priors Enable Efficient Exploration for Robust Motion Tracking on Legged Robots
Learning natural, animal-like locomotion from demonstrations has become a core paradigm in legged robotics. Despite the recent advancements in motion tracking, most existing methods demand extensive tuning and rely on reference data during deployment, limiting adaptability. We present APEX (Action Priors enable Efficient Exploration), a plug-and-play extension to state-of-the-art motion tracking algorithms that eliminates any dependence on reference data during deployment, improves sample efficiency, and reduces parameter tuning effort. APEX integrates expert demonstrations directly into reinforcement learning (RL) by incorporating decaying action priors, which initially bias exploration toward expert demonstrations but gradually allow the policy to explore independently. This is combined with a multi-critic framework that balances task performance with motion style. Moreover, APEX enables a single policy to learn diverse motions and transfer reference-like styles across different terrains and velocities, while remaining robust to variations in reward design. We validate the effectiveness of our method through extensive experiments in both simulation and on a Unitree Go2 robot. By leveraging demonstrations to guide exploration during RL training, without imposing explicit bias toward them, APEX enables legged robots to learn with greater stability, efficiency, and generalization. We believe this approach paves the way for guidance-driven RL to boost natural skill acquisition in a wide array of robotic tasks, from locomotion to manipulation. Website and code: https://marmotlab.github.io/APEX/.
comment: This work was intended as a replacement of arXiv:2505.10022 and any subsequent updates will appear there
♻ ☆ Towards High-Consistency Embodied World Model with Multi-View Trajectory Videos
Embodied world models aim to predict and interact with the physical world through visual observations and actions. However, existing models struggle to accurately translate low-level actions (e.g., joint positions) into precise robotic movements in predicted frames, leading to inconsistencies with real-world physical interactions. To address these limitations, we propose MTV-World, an embodied world model that introduces Multi-view Trajectory-Video control for precise visuomotor prediction. Specifically, instead of directly using low-level actions for control, we employ trajectory videos obtained through camera intrinsic and extrinsic parameters and Cartesian-space transformation as control signals. However, projecting 3D raw actions onto 2D images inevitably causes a loss of spatial information, making a single view insufficient for accurate interaction modeling. To overcome this, we introduce a multi-view framework that compensates for spatial information loss and ensures high-consistency with physical world. MTV-World forecasts future frames based on multi-view trajectory videos as input and conditioning on an initial frame per view. Furthermore, to systematically evaluate both robotic motion precision and object interaction accuracy, we develop an auto-evaluation pipeline leveraging multimodal large models and referring video object segmentation models. To measure spatial consistency, we formulate it as an object location matching problem and adopt the Jaccard Index as the evaluation metric. Extensive experiments demonstrate that MTV-World achieves precise control execution and accurate physical interaction modeling in complex dual-arm scenarios.
comment: 15 pages, 23 figures
♻ ☆ RL-100: Performant Robotic Manipulation with Real-World Reinforcement Learning
Real-world robotic manipulation in homes and factories demands reliability, efficiency, and robustness that approach or surpass the performance of skilled human operators. We present RL-100, a real-world reinforcement learning framework built on diffusion-based visuomotor policies. RL-100 unifies imitation and reinforcement learning under a single PPO-style objective applied within the denoising process, yielding conservative and stable policy improvements across both offline and online stages. To meet deployment latency constraints, we employ a lightweight consistency distillation procedure that compresses multi-step diffusion into a one-step controller for high-frequency control. The framework is task-, embodiment-, and representation-agnostic, and supports both single-action outputs and action-chunking control. We evaluate RL-100 on seven diverse real-robot manipulation tasks, ranging from dynamic pushing and agile bowling to pouring, cloth folding, unscrewing, and multi-stage juicing. RL-100 attains 100% success across evaluated trials, achieving 900 out of 900 successful episodes, including up to 250 out of 250 consecutive trials on one task, and matches or surpasses expert teleoperators in time-to-completion. Without retraining, a single policy attains approximately 90% zero-shot success under environmental and dynamics shifts, adapts in a few-shot regime to significant task variations (86.7%), and remains robust to aggressive human perturbations (about 95%). In a public shopping-mall deployment, the juicing robot served random customers continuously for roughly seven hours without failure. Together, these results suggest a practical path toward deployment-ready robot learning: start from human priors, align training objectives with human-grounded metrics, and reliably extend performance beyond human demonstrations.
comment: https://lei-kun.github.io/RL-100/
♻ ☆ GPA-RAM: Grasp-Pretraining Augmented Robotic Attention Mamba for Spatial Task Learning
Task failures in prior fine-grained robotic manipulation methods often stem from suboptimal initial grasping, which is critical for subsequent manipulation and reducing the requirement for complex pose adjustments. To address this, we propose Grasp-Pretraining Augmentation (GPA), a general multi-modal learning framework that enhances grasp perception without additional grasp pose data collection and labeling. GPA achieves evident enhancement on RLBench multi-task benchmark (from 79.3% to 84.2%) and ALOHA bimanual manipulation tasks (from 86%/16% to 98%/38%). Although GPA enhances fine-grained grasping performance by leveraging increased model capacity, it incurs computational latency and hinders real-time deployment. To mitigate this limitation, we propose Robotic Attention Mamba (RAM). This architecture synergizes attention mechanisms with state space models (SSMs), effectively capturing complex spatial features while maintaining superior inference efficiency. Our unified GPA-RAM framework balances model capacity with efficiency and applies to both discrete and continuous action generation. GPA-RAM demonstrates superior performance across four robotic systems with diverse camera configurations in both simulation and the real world. Compared with previous state-of-the-art methods, it improves average success rates by 8.2% over RVT2 (from 79.3% to 87.5%) and 2.6% over ARP^+ (from 84.9% to 87.5%) on the RLBench multi-task benchmark and 40% (from 16% to 56%), 12% (from 86% to 98%) on ALOHA bimanual continuous tasks, with inference speed of about 71 FPS. This work provides a framework for developing robotic systems that are simultaneously precise and responsive. The project and code are at https://gpa-ram.github.io/
♻ ☆ RoboTidy : A 3D Gaussian Splatting Household Tidying Benchmark for Embodied Navigation and Action
Household tidying is an important application area, yet current benchmarks neither model user preferences nor support mobility, and they generalize poorly, making it hard to comprehensively assess integrated language-to-action capabilities. To address this, we propose RoboTidy, a unified benchmark for language-guided household tidying that supports Vision-Language-Action (VLA) and Vision-Language-Navigation (VLN) training and evaluation. RoboTidy provides 500 photorealistic 3D Gaussian Splatting (3DGS) household scenes (covering 500 objects and containers) with collisions, formulates tidying as an "Action (Object, Container)" list, and supplies 6.4k high-quality manipulation demonstration trajectories and 1.5k naviagtion trajectories to support both few-shot and large-scale training. We also deploy RoboTidy in the real world for object tidying, establishing an end-to-end benchmark for household tidying. RoboTidy offers a scalable platform and bridges a key gap in embodied AI by enabling holistic and realistic evaluation of language-guided robots.
♻ ☆ $π^{*}_{0.6}$: a VLA That Learns From Experience
We study how vision-language-action (VLA) models can improve through real-world deployments via reinforcement learning (RL). We present a general-purpose method, RL with Experience and Corrections via Advantage-conditioned Policies (RECAP), that provides for RL training of VLAs via advantage conditioning. Our method incorporates heterogeneous data into the self-improvement process, including demonstrations, data from on-policy collection, and expert teleoperated interventions provided during autonomous execution. RECAP starts by pre-training a generalist VLA with offline RL, which we call $π^{*}_{0.6}$, that can then be specialized to attain high performance on downstream tasks through on-robot data collection. We show that the $π^{*}_{0.6}$ model trained with the full RECAP method can fold laundry in real homes, reliably assemble boxes, and make espresso drinks using a professional espresso machine. On some of the hardest tasks, RECAP more than doubles task throughput and roughly halves the task failure rate.
♻ ☆ Is Your VLM for Autonomous Driving Safety-Ready? A Comprehensive Benchmark for Evaluating External and In-Cabin Risks
Vision-Language Models (VLMs) show great promise for autonomous driving, but their suitability for safety-critical scenarios is largely unexplored, raising safety concerns. This issue arises from the lack of comprehensive benchmarks that assess both external environmental risks and in-cabin driving behavior safety simultaneously. To bridge this critical gap, we introduce DSBench, the first comprehensive Driving Safety Benchmark designed to assess a VLM's awareness of various safety risks in a unified manner. DSBench encompasses two major categories: external environmental risks and in-cabin driving behavior safety, divided into 10 key categories and a total of 28 sub-categories. This comprehensive evaluation covers a wide range of scenarios, ensuring a thorough assessment of VLMs' performance in safety-critical contexts. Extensive evaluations across various mainstream open-source and closed-source VLMs reveal significant performance degradation under complex safety-critical situations, highlighting urgent safety concerns. To address this, we constructed a large dataset of 98K instances focused on in-cabin and external safety scenarios, showing that fine-tuning on this dataset significantly enhances the safety performance of existing VLMs and paves the way for advancing autonomous driving technology. The benchmark toolkit, code, and model checkpoints will be publicly accessible.
♻ ☆ LoopSR: Looping Sim-and-Real for Lifelong Policy Adaptation of Legged Robots IROS 2025
Reinforcement Learning (RL) has shown its remarkable and generalizable capability in legged locomotion through sim-to-real transfer. However, while adaptive methods like domain randomization are expected to enhance policy robustness across diverse environments, they potentially compromise the policy's performance in any specific environment, leading to suboptimal real-world deployment due to the No Free Lunch theorem. To address this, we propose LoopSR, a lifelong policy adaptation framework that continuously refines RL policies in the post-deployment stage. LoopSR employs a transformer-based encoder to map real-world trajectories into a latent space and reconstruct a digital twin of the real world for further improvement. Autoencoder architecture and contrastive learning methods are adopted to enhance feature extraction of real-world dynamics. Simulation parameters for continual training are derived by combining predicted values from the decoder with retrieved parameters from a pre-collected simulation trajectory dataset. By leveraging simulated continual training, LoopSR achieves superior data efficiency compared with strong baselines, yielding eminent performance with limited data in both sim-to-sim and sim-to-real experiments. Please refer to https://peilinwu.site/looping-sim-and-real.github.io/ for videos and code.
comment: IROS 2025
♻ ☆ Searching in Space and Time: Unified Memory-Action Loops for Open-World Object Retrieval ICRA
Service robots must retrieve objects in dynamic, open-world settings where requests may reference attributes ("the red mug"), spatial context ("the mug on the table"), or past states ("the mug that was here yesterday"). Existing approaches capture only parts of this problem: scene graphs capture spatial relations but ignore temporal grounding, temporal reasoning methods model dynamics but do not support embodied interaction, and dynamic scene graphs handle both but remain closed-world with fixed vocabularies. We present STAR (SpatioTemporal Active Retrieval), a framework that unifies memory queries and embodied actions within a single decision loop. STAR leverages non-parametric long-term memory and a working memory to support efficient recall, and uses a vision-language model to select either temporal or spatial actions at each step. We introduce STARBench, a benchmark of spatiotemporal object search tasks across simulated and real environments. Experiments in STARBench and on a Tiago robot show that STAR consistently outperforms scene-graph and memory-only baselines, demonstrating the benefits of treating search in time and search in space as a unified problem.
comment: This paper is under review at ICRA
♻ ☆ Inference of Human-derived Specifications of Object Placement via Demonstration IJCAI'25
As robots' manipulation capabilities improve for pick-and-place tasks (e.g., object packing, sorting, and kitting), methods focused on understanding human-acceptable object configurations remain limited expressively with regard to capturing spatial relationships important to humans. To advance robotic understanding of human rules for object arrangement, we introduce positionally-augmented RCC (PARCC), a formal logic framework based on region connection calculus (RCC) for describing the relative position of objects in space. Additionally, we introduce an inference algorithm for learning PARCC specifications via demonstrations. Finally, we present the results from a human study, which demonstrate our framework's ability to capture a human's intended specification and the benefits of learning from demonstration approaches over human-provided specifications.
comment: IJCAI'25
♻ ☆ Vector Quantized-Elites: Unsupervised and Problem-Agnostic Quality-Diversity Optimization
Quality-Diversity algorithms have transformed optimization by prioritizing the discovery of diverse, high-performing solutions over a single optimal result. However, traditional Quality-Diversity methods, such as MAP-Elites, rely heavily on predefined behavior descriptors and complete prior knowledge of the task to define the behavior space grid, limiting their flexibility and applicability. In this work, we introduce Vector Quantized-Elites (VQ-Elites), a novel Quality-Diversity algorithm that autonomously constructs a structured behavior space grid using unsupervised learning, eliminating the need for prior task-specific knowledge. At the core of VQ-Elites is the integration of Vector Quantized Variational Autoencoders, which enables the dynamic learning of behavior descriptors and the generation of a structured, rather than unstructured, behavior space grid -- a significant advancement over existing unsupervised Quality-Diversity approaches. This design establishes VQ-Elites as a flexible, robust, and task-agnostic optimization framework. To further enhance the performance of unsupervised Quality-Diversity algorithms, we introduce behavior space bounding and cooperation mechanisms, which significantly improve convergence and performance, as well as the Effective Diversity Ratio and Coverage Diversity Score, two novel metrics that quantify the actual diversity in the unsupervised setting. We validate VQ-Elites on robotic arm pose-reaching, mobile robot space-covering, and MiniGrid exploration tasks. The results demonstrate its ability to efficiently generate diverse, high-quality solutions, emphasizing its adaptability, scalability, robustness to hyperparameters, and potential to extend Quality-Diversity optimization to complex, previously inaccessible domains.
comment: 15 pages (+4 supplementary), 14 (+1) figures, 1 algorithm, 1 (+8) table(s), accepted at IEEE Transactions on Evolutionary Computation
♻ ☆ RAPID: Robust and Agile Planner Using Inverse Reinforcement Learning for Vision-Based Drone Navigation
This paper introduces a learning-based visual planner for agile drone flight in cluttered environments. The proposed planner generates collision-free waypoints in milliseconds, enabling drones to perform agile maneuvers in complex environments without building separate perception, mapping, and planning modules. Learning-based methods, such as behavior cloning (BC) and reinforcement learning (RL), demonstrate promising performance in visual navigation but still face inherent limitations. BC is susceptible to compounding errors due to limited expert imitation, while RL struggles with reward function design and sample inefficiency. To address these limitations, this paper proposes an inverse reinforcement learning (IRL)-based framework for high-speed visual navigation. By leveraging IRL, it is possible to reduce the number of interactions with simulation environments and improve capability to deal with high-dimensional spaces while preserving the robustness of RL policies. A motion primitive-based path planning algorithm collects an expert dataset with privileged map data from diverse environments, ensuring comprehensive scenario coverage. By leveraging both the acquired expert and learner dataset gathered from the agent's interactions with the simulation environments, a robust reward function and policy are learned across diverse states. While the proposed method is trained in a simulation environment only, it can be directly applied to real-world scenarios without additional training or tuning. The performance of the proposed method is validated in both simulation and real-world environments, including forests and various structures. The trained policy achieves an average speed of 7 m/s and a maximum speed of 8.8 m/s in real flight experiments. To the best of our knowledge, this is the first work to successfully apply an IRL framework for high-speed visual navigation of drones.
comment: 18 pages, 11 figures, 58 references, and appendix is included
Robotics 62
☆ $π^{*}_{0.6}$: a VLA That Learns From Experience
We study how vision-language-action (VLA) models can improve through real-world deployments via reinforcement learning (RL). We present a general-purpose method, RL with Experience and Corrections via Advantage-conditioned Policies (RECAP), that provides for RL training of VLAs via advantage conditioning. Our method incorporates heterogeneous data into the self-improvement process, including demonstrations, data from on-policy collection, and expert teleoperated interventions provided during autonomous execution. RECAP starts by pre-training a generalist VLA with offline RL, which we call $π^{*}_{0.6}$, that can then be specialized to attain high performance on downstream tasks through on-robot data collection. We show that the $π^{*}_{0.6}$ model trained with the full RECAP method can fold laundry in real homes, reliably assemble boxes, and make espresso drinks using a professional espresso machine. On some of the hardest tasks, RECAP more than doubles task throughput and roughly halves the task failure rate.
☆ HMC: Learning Heterogeneous Meta-Control for Contact-Rich Loco-Manipulation
Learning from real-world robot demonstrations holds promise for interacting with complex real-world environments. However, the complexity and variability of interaction dynamics often cause purely positional controllers to struggle with contacts or varying payloads. To address this, we propose a Heterogeneous Meta-Control (HMC) framework for Loco-Manipulation that adaptively stitches multiple control modalities: position, impedance, and hybrid force-position. We first introduce an interface, HMC-Controller, for blending actions from different control profiles continuously in the torque space. HMC-Controller facilitates both teleoperation and policy deployment. Then, to learn a robust force-aware policy, we propose HMC-Policy to unify different controllers into a heterogeneous architecture. We adopt a mixture-of-experts style routing to learn from large-scale position-only data and fine-grained force-aware demonstrations. Experiments on a real humanoid robot show over 50% relative improvement vs. baselines on challenging tasks such as compliant table wiping and drawer opening, demonstrating the efficacy of HMC.
☆ Robust Verification of Controllers under State Uncertainty via Hamilton-Jacobi Reachability Analysis
As perception-based controllers for autonomous systems become increasingly popular in the real world, it is important that we can formally verify their safety and performance despite perceptual uncertainty. Unfortunately, the verification of such systems remains challenging, largely due to the complexity of the controllers, which are often nonlinear, nonconvex, learning-based, and/or black-box. Prior works propose verification algorithms that are based on approximate reachability methods, but they often restrict the class of controllers and systems that can be handled or result in overly conservative analyses. Hamilton-Jacobi (HJ) reachability analysis is a popular formal verification tool for general nonlinear systems that can compute optimal reachable sets under worst-case system uncertainties; however, its application to perception-based systems is currently underexplored. In this work, we propose RoVer-CoRe, a framework for the Robust Verification of Controllers via HJ Reachability. To the best of our knowledge, RoVer-CoRe is the first HJ reachability-based framework for the verification of perception-based systems under perceptual uncertainty. Our key insight is to concatenate the system controller, observation function, and the state estimation modules to obtain an equivalent closed-loop system that is readily compatible with existing reachability frameworks. Within RoVer-CoRe, we propose novel methods for formal safety verification and robust controller design. We demonstrate the efficacy of the framework in case studies involving aircraft taxiing and NN-based rover navigation. Code is available at the link in the footnote.
comment: Submitted to the 8th Annual Learning for Dynamics & Control Conference
☆ Co-Me: Confidence-Guided Token Merging for Visual Geometric Transformers
We propose Confidence-Guided Token Merging (Co-Me), an acceleration mechanism for visual geometric transformers without retraining or finetuning the base model. Co-Me distilled a light-weight confidence predictor to rank tokens by uncertainty and selectively merge low-confidence ones, effectively reducing computation while maintaining spatial coverage. Compared to similarity-based merging or pruning, the confidence signal in Co-Me reliably indicates regions emphasized by the transformer, enabling substantial acceleration without degrading performance. Co-Me applies seamlessly to various multi-view and streaming visual geometric transformers, achieving speedups that scale with sequence length. When applied to VGGT and MapAnything, Co-Me achieves up to $11.3\times$ and $7.2\times$ speedup, making visual geometric transformers practical for real-time 3D perception and reconstruction.
☆ NORA-1.5: A Vision-Language-Action Model Trained using World Model- and Action-based Preference Rewards
Vision--language--action (VLA) models have recently shown promising performance on a variety of embodied tasks, yet they still fall short in reliability and generalization, especially when deployed across different embodiments or real-world environments. In this work, we introduce NORA-1.5, a VLA model built from the pre-trained NORA backbone by adding to it a flow-matching-based action expert. This architectural enhancement alone yields substantial performance gains, enabling NORA-1.5 to outperform NORA and several state-of-the-art VLA models across both simulated and real-world benchmarks. To further improve robustness and task success, we develop a set of reward models for post-training VLA policies. Our rewards combine (i) an action-conditioned world model (WM) that evaluates whether generated actions lead toward the desired goal, and (ii) a deviation-from-ground-truth heuristic that distinguishes good actions from poor ones. Using these reward signals, we construct preference datasets and adapt NORA-1.5 to target embodiments through direct preference optimization (DPO). Extensive evaluations show that reward-driven post-training consistently improves performance in both simulation and real-robot settings, demonstrating significant VLA model-reliability gains through simple yet effective reward models. Our findings highlight NORA-1.5 and reward-guided post-training as a viable path toward more dependable embodied agents suitable for real-world deployment.
comment: https://declare-lab.github.io/nora-1.5
☆ Gallant: Voxel Grid-based Humanoid Locomotion and Local-navigation across 3D Constrained Terrains
Robust humanoid locomotion requires accurate and globally consistent perception of the surrounding 3D environment. However, existing perception modules, mainly based on depth images or elevation maps, offer only partial and locally flattened views of the environment, failing to capture the full 3D structure. This paper presents Gallant, a voxel-grid-based framework for humanoid locomotion and local navigation in 3D constrained terrains. It leverages voxelized LiDAR data as a lightweight and structured perceptual representation, and employs a z-grouped 2D CNN to map this representation to the control policy, enabling fully end-to-end optimization. A high-fidelity LiDAR simulation that dynamically generates realistic observations is developed to support scalable, LiDAR-based training and ensure sim-to-real consistency. Experimental results show that Gallant's broader perceptual coverage facilitates the use of a single policy that goes beyond the limitations of previous methods confined to ground-level obstacles, extending to lateral clutter, overhead constraints, multi-level structures, and narrow passages. Gallant also firstly achieves near 100% success rates in challenging scenarios such as stair climbing and stepping onto elevated platforms through improved end-to-end optimization.
☆ Active Matter as a framework for living systems-inspired Robophysics
Robophysics investigates the physical principles that govern living-like robots operating in complex, realworld environments. Despite remarkable technological advances, robots continue to face fundamental efficiency limitations. At the level of individual units, locomotion remains a challenge, while at the collective level, robot swarms struggle to achieve shared purpose, coordination, communication, and cost efficiency. This perspective article examines the key challenges faced by bio-inspired robotic collectives and highlights recent research efforts that incorporate principles from active-matter physics and biology into the modeling and design of robot swarms.
☆ Is Your VLM for Autonomous Driving Safety-Ready? A Comprehensive Benchmark for Evaluating External and In-Cabin Risks
Vision-Language Models (VLMs) show great promise for autonomous driving, but their suitability for safety-critical scenarios is largely unexplored, raising safety concerns. This issue arises from the lack of comprehensive benchmarks that assess both external environmental risks and in-cabin driving behavior safety simultaneously. To bridge this critical gap, we introduce DSBench, the first comprehensive Driving Safety Benchmark designed to assess a VLM's awareness of various safety risks in a unified manner. DSBench encompasses two major categories: external environmental risks and in-cabin driving behavior safety, divided into 10 key categories and a total of 28 sub-categories. This comprehensive evaluation covers a wide range of scenarios, ensuring a thorough assessment of VLMs' performance in safety-critical contexts. Extensive evaluations across various mainstream open-source and closed-source VLMs reveal significant performance degradation under complex safety-critical situations, highlighting urgent safety concerns. To address this, we constructed a large dataset of 98K instances focused on in-cabin and external safety scenarios, showing that fine-tuning on this dataset significantly enhances the safety performance of existing VLMs and paves the way for advancing autonomous driving technology. The benchmark toolkit, code, and model checkpoints will be publicly accessible.
☆ Masked IRL: LLM-Guided Reward Disambiguation from Demonstrations and Language
Robots can adapt to user preferences by learning reward functions from demonstrations, but with limited data, reward models often overfit to spurious correlations and fail to generalize. This happens because demonstrations show robots how to do a task but not what matters for that task, causing the model to focus on irrelevant state details. Natural language can more directly specify what the robot should focus on, and, in principle, disambiguate between many reward functions consistent with the demonstrations. However, existing language-conditioned reward learning methods typically treat instructions as simple conditioning signals, without fully exploiting their potential to resolve ambiguity. Moreover, real instructions are often ambiguous themselves, so naive conditioning is unreliable. Our key insight is that these two input types carry complementary information: demonstrations show how to act, while language specifies what is important. We propose Masked Inverse Reinforcement Learning (Masked IRL), a framework that uses large language models (LLMs) to combine the strengths of both input types. Masked IRL infers state-relevance masks from language instructions and enforces invariance to irrelevant state components. When instructions are ambiguous, it uses LLM reasoning to clarify them in the context of the demonstrations. In simulation and on a real robot, Masked IRL outperforms prior language-conditioned IRL methods by up to 15% while using up to 4.7 times less data, demonstrating improved sample-efficiency, generalization, and robustness to ambiguous language. Project page: https://MIT-CLEAR-Lab.github.io/Masked-IRL and Code: https://github.com/MIT-CLEAR-Lab/Masked-IRL
☆ Aerial Assistance System for Automated Firefighting during Turntable Ladder Operations
Fires in industrial facilities pose special challenges to firefighters, e.g., due to the sheer size and scale of the buildings. The resulting visual obstructions impair firefighting accuracy, further compounded by inaccurate assessments of the fire's location. Such imprecision simultaneously increases the overall damage and prolongs the fire-brigades operation unnecessarily. We propose an automated assistance system for firefighting using a motorized fire monitor on a turntable ladder with aerial support from an unmanned aerial vehicle (UAV). The UAV flies autonomously within an obstacle-free flight funnel derived from geodata, detecting and localizing heat sources. An operator supervises the operation on a handheld controller and selects a fire target in reach. After the selection, the UAV automatically plans and traverses between two triangulation poses for continued fire localization. Simultaneously, our system steers the fire monitor to ensure the water jet reaches the detected heat source. In preliminary tests, our assistance system successfully localized multiple heat sources and directed a water jet towards the fires.
comment: 7 pages, Presented at IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), Galway, Ireland, 2025
☆ Enhancing End-to-End Autonomous Driving with Risk Semantic Distillaion from VLM
The autonomous driving (AD) system has exhibited remarkable performance in complex driving scenarios. However, generalization is still a key limitation for the current system, which refers to the ability to handle unseen scenarios or unfamiliar sensor configurations.Related works have explored the use of Vision-Language Models (VLMs) to address few-shot or zero-shot tasks. While promising, these methods introduce a new challenge: the emergence of a hybrid AD system, where two distinct systems are used to plan a trajectory, leading to potential inconsistencies. Alternative research directions have explored Vision-Language-Action (VLA) frameworks that generate control actions from VLM directly. However, these end-to-end solutions demonstrate prohibitive computational demands. To overcome these challenges, we introduce Risk Semantic Distillation (RSD), a novel framework that leverages VLMs to enhance the training of End-to-End (E2E) AD backbones. By providing risk attention for key objects, RSD addresses the issue of generalization. Specifically, we introduce RiskHead, a plug-in module that distills causal risk estimates from Vision-Language Models into Bird's-Eye-View (BEV) features, yielding interpretable risk-attention maps.This approach allows BEV features to learn richer and more nuanced risk attention representations, which directly enhance the model's ability to handle spatial boundaries and risky objects.By focusing on risk attention, RSD aligns better with human-like driving behavior, which is essential to navigate in complex and dynamic environments. Our experiments on the Bench2Drive benchmark demonstrate the effectiveness of RSD in managing complex and unpredictable driving conditions. Due to the enhanced BEV representations enabled by RSD, we observed a significant improvement in both perception and planning capabilities.
☆ Advancing Minimally Invasive Precision Surgery in Open Cavities with Robotic Flexible Endoscopy
Flexible robots hold great promise for enhancing minimally invasive surgery (MIS) by providing superior dexterity, precise control, and safe tissue interaction. Yet, translating these advantages into endoscopic interventions within open cavities remains challenging. The lack of anatomical constraints and the inherent flexibility of such devices complicate their control, while the limited field of view of endoscopes restricts situational awareness. We present a robotic platform designed to overcome these challenges and demonstrate its potential in fetoscopic laser coagulation, a complex MIS procedure typically performed only by highly experienced surgeons. Our system combines a magnetically actuated flexible endoscope with teleoperated and semi-autonomous navigation capabilities for performing targeted laser ablations. To enhance surgical awareness, the platform reconstructs real-time mosaics of the endoscopic scene, providing an extended and continuous visual context. The ability of this system to address the key limitations of MIS in open spaces is validated in vivo in an ovine model.
☆ Towards A Catalogue of Requirement Patterns for Space Robotic Missions
In the development of safety and mission-critical systems, including autonomous space robotic missions, complex behaviour is captured during the requirements elicitation phase. Requirements are typically expressed using natural language which is ambiguous and not amenable to formal verification methods that can provide robust guarantees of system behaviour. To support the definition of formal requirements, specification patterns provide reusable, logic-based templates. A suite of robotic specification patterns, along with their formalisation in NASA's Formal Requirements Elicitation Tool (FRET) already exists. These pre-existing requirement patterns are domain agnostic and, in this paper we explore their applicability for space missions. To achieve this we carried out a literature review of existing space missions and formalised their requirements using FRET, contributing a corpus of space mission requirements. We categorised these requirements using pre-existing specification patterns which demonstrated their applicability in space missions. However, not all of the requirements that we formalised corresponded to an existing pattern so we have contributed 5 new requirement specification patterns as well as several variants of the existing and new patterns. We also conducted an expert evaluation of the new patterns, highlighting their benefits and limitations.
comment: In Proceedings FMAS 2025, arXiv:2511.13245
☆ Achieving Safe Control Online through Integration of Harmonic Control Lyapunov-Barrier Functions with Unsafe Object-Centric Action Policies
We propose a method for combining Harmonic Control Lyapunov-Barrier Functions (HCLBFs) derived from Signal Temporal Logic (STL) specifications with any given robot policy to turn an unsafe policy into a safe one with formal guarantees. The two components are combined via HCLBF-derived safety certificates, thus producing commands that preserve both safety and task-driven behavior. We demonstrate with a simple proof-of-concept implementation for an object-centric force-based policy trained through reinforcement learning for a movement task of a stationary robot arm that is able to avoid colliding with obstacles on a table top after combining the policy with the safety constraints. The proposed method can be generalized to more complex specifications and dynamic task settings.
comment: In Proceedings FMAS 2025, arXiv:2511.13245
☆ Safe-ROS: An Architecture for Autonomous Robots in Safety-Critical Domains
Deploying autonomous robots in safety-critical domains requires architectures that ensure operational effectiveness and safety compliance. In this paper, we contribute the Safe-ROS architecture for developing reliable and verifiable autonomous robots in such domains. It features two distinct subsystems: (1) an intelligent control system that is responsible for normal/routine operations, and (2) a Safety System consisting of Safety Instrumented Functions (SIFs) that provide formally verifiable independent oversight. We demonstrate Safe-ROS on an AgileX Scout Mini robot performing autonomous inspection in a nuclear environment. One safety requirement is selected and instantiated as a SIF. To support verification, we implement the SIF as a cognitive agent, programmed to stop the robot whenever it detects that it is too close to an obstacle. We verify that the agent meets the safety requirement and integrate it into the autonomous inspection. This integration is also verified, and the full deployment is validated in a Gazebo simulation, and lab testing. We evaluate this architecture in the context of the UK nuclear sector, where safety and regulation are crucial aspects of deployment. Success criteria include the development of a formal property from the safety requirement, implementation, and verification of the SIF, and the integration of the SIF into the operational robotic autonomous system. Our results demonstrate that the Safe-ROS architecture can provide safety verifiable oversight while deploying autonomous robots in safety-critical domains, offering a robust framework that can be extended to additional requirements and various applications.
comment: In Proceedings FMAS 2025, arXiv:2511.13245
☆ Mutation Testing for Industrial Robotic Systems
Industrial robotic systems (IRS) are increasingly deployed in diverse environments, where failures can result in severe accidents and costly downtime. Ensuring the reliability of the software controlling these systems is therefore critical. Mutation testing, a technique widely used in software engineering, evaluates the effectiveness of test suites by introducing small faults, or mutants, into the code. However, traditional mutation operators are poorly suited to robotic programs, which involve message-based commands and interactions with the physical world. This paper explores the adaptation of mutation testing to IRS by defining domain-specific mutation operators that capture the semantics of robot actions and sensor readings. We propose a methodology for generating meaningful mutants at the level of high-level read and write operations, including movement, gripper actions, and sensor noise injection. An empirical study on a pick-and-place scenario demonstrates that our approach produces more informative mutants and reduces the number of invalid or equivalent cases compared to conventional operators. Results highlight the potential of mutation testing to enhance test suite quality and contribute to safer, more reliable industrial robotic systems.
comment: In Proceedings FMAS 2025, arXiv:2511.13245
Self-Supervised Multisensory Pretraining for Contact-Rich Robot Reinforcement Learning
Effective contact-rich manipulation requires robots to synergistically leverage vision, force, and proprioception. However, Reinforcement Learning agents struggle to learn in such multisensory settings, especially amidst sensory noise and dynamic changes. We propose MultiSensory Dynamic Pretraining (MSDP), a novel framework for learning expressive multisensory representations tailored for task-oriented policy learning. MSDP is based on masked autoencoding and trains a transformer-based encoder by reconstructing multisensory observations from only a subset of sensor embeddings, leading to cross-modal prediction and sensor fusion. For downstream policy learning, we introduce a novel asymmetric architecture, where a cross-attention mechanism allows the critic to extract dynamic, task-specific features from the frozen embeddings, while the actor receives a stable pooled representation to guide its actions. Our method demonstrates accelerated learning and robust performance under diverse perturbations, including sensor noise, and changes in object dynamics. Evaluations in multiple challenging, contact-rich robot manipulation tasks in simulation and the real world showcase the effectiveness of MSDP. Our approach exhibits strong robustness to perturbations and achieves high success rates on the real robot with as few as 6,000 online interactions, offering a simple yet powerful solution for complex multisensory robotic control.
comment: 9 pages, 10 figures, preprint
☆ Continuous Vision-Language-Action Co-Learning with Semantic-Physical Alignment for Behavioral Cloning AAAI 2026
Language-conditioned manipulation facilitates human-robot interaction via behavioral cloning (BC), which learns control policies from human demonstrations and serves as a cornerstone of embodied AI. Overcoming compounding errors in sequential action decisions remains a central challenge to improving BC performance. Existing approaches mitigate compounding errors through data augmentation, expressive representation, or temporal abstraction. However, they suffer from physical discontinuities and semantic-physical misalignment, leading to inaccurate action cloning and intermittent execution. In this paper, we present Continuous vision-language-action Co-Learning with Semantic-Physical Alignment (CCoL), a novel BC framework that ensures temporally consistent execution and fine-grained semantic grounding. It generates robust and smooth action execution trajectories through continuous co-learning across vision, language, and proprioceptive inputs (e.g., robot internal states). Meanwhile, we anchor language semantics to visuomotor representations by a bidirectional cross-attention to learn contextual information for action generation, successfully overcoming the problem of semantic-physical misalignment. Extensive experiments show that CCoL achieves an average 8.0% relative improvement across three simulation suites, with up to 19.2% relative gain in human-demonstrated bimanual insertion tasks. Real-world tests on a 7-DoF robot further confirm CCoL's generalization under unseen and noisy object states.
comment: Accepted at AAAI 2026, the Project website is available at https://qhemu.github.io/CCoL/
☆ Perception-aware Exploration for Consumer-grade UAVs
In our work, we extend the current state-of-the-art approach for autonomous multi-UAV exploration to consumer-level UAVs, such as the DJI Mini 3 Pro. We propose a pipeline that selects viewpoint pairs from which the depth can be estimated and plans the trajectory that satisfies motion constraints necessary for odometry estimation. For the multi-UAV exploration, we propose a semi-distributed communication scheme that distributes the workload in a balanced manner. We evaluate our model performance in simulation for different numbers of UAVs and prove its ability to safely explore the environment and reconstruct the map even with the hardware limitations of consumer-grade UAVs.
☆ Identifying Time-varying Costs in Finite-horizon Linear Quadratic Gaussian Games
We address cost identification in a finite-horizon linear quadratic Gaussian game. We characterize the set of cost parameters that generate a given Nash equilibrium policy. We propose a backpropagation algorithm to identify the time-varying cost parameters. We derive a probabilistic error bound when the cost parameters are identified from finite trajectories. We test our method in numerical and driving simulations. Our algorithm identifies the cost parameters that can reproduce the Nash equilibrium policy and trajectory observations.
☆ Going Places: Place Recognition in Artificial and Natural Systems
Place recognition, the ability to identify previously visited locations, is critical for both biological navigation and autonomous systems. This review synthesizes findings from robotic systems, animal studies, and human research to explore how different systems encode and recall place. We examine the computational and representational strategies employed across artificial systems, animals, and humans, highlighting convergent solutions such as topological mapping, cue integration, and memory management. Animal systems reveal evolved mechanisms for multimodal navigation and environmental adaptation, while human studies provide unique insights into semantic place concepts, cultural influences, and introspective capabilities. Artificial systems showcase scalable architectures and data-driven models. We propose a unifying set of concepts by which to consider and develop place recognition mechanisms and identify key challenges such as generalization, robustness, and environmental variability. This review aims to foster innovations in artificial localization by connecting future developments in artificial place recognition systems to insights from both animal navigation research and human spatial cognition studies.
☆ Simultaneous Localization and 3D-Semi Dense Mapping for Micro Drones Using Monocular Camera and Inertial Sensors
Monocular simultaneous localization and mapping (SLAM) algorithms estimate drone poses and build a 3D map using a single camera. Current algorithms include sparse methods that lack detailed geometry, while learning-driven approaches produce dense maps but are computationally intensive. Monocular SLAM also faces scale ambiguities, which affect its accuracy. To address these challenges, we propose an edge-aware lightweight monocular SLAM system combining sparse keypoint-based pose estimation with dense edge reconstruction. Our method employs deep learning-based depth prediction and edge detection, followed by optimization to refine keypoints and edges for geometric consistency, without relying on global loop closure or heavy neural computations. We fuse inertial data with vision by using an extended Kalman filter to resolve scale ambiguity and improve accuracy. The system operates in real time on low-power platforms, as demonstrated on a DJI Tello drone with a monocular camera and inertial sensors. In addition, we demonstrate robust autonomous navigation and obstacle avoidance in indoor corridors and on the TUM RGBD dataset. Our approach offers an effective, practical solution to real-time mapping and navigation in resource-constrained environments.
☆ MA-SLAM: Active SLAM in Large-Scale Unknown Environment using Map Aware Deep Reinforcement Learning
Active Simultaneous Localization and Mapping (Active SLAM) involves the strategic planning and precise control of a robotic system's movement in order to construct a highly accurate and comprehensive representation of its surrounding environment, which has garnered significant attention within the research community. While the current methods demonstrate efficacy in small and controlled settings, they face challenges when applied to large-scale and diverse environments, marked by extended periods of exploration and suboptimal paths of discovery. In this paper, we propose MA-SLAM, a Map-Aware Active SLAM system based on Deep Reinforcement Learning (DRL), designed to address the challenge of efficient exploration in large-scale environments. In pursuit of this objective, we put forward a novel structured map representation. By discretizing the spatial data and integrating the boundary points and the historical trajectory, the structured map succinctly and effectively encapsulates the visited regions, thereby serving as input for the deep reinforcement learning based decision module. Instead of sequentially predicting the next action step within the decision module, we have implemented an advanced global planner to optimize the exploration path by leveraging long-range target points. We conducted experiments in three simulation environments and deployed in a real unmanned ground vehicle (UGV), the results demonstrate that our approach significantly reduces both the duration and distance of exploration compared with state-of-the-art methods.
☆ Dual-Variable Force Characterisation method for Human-Robot Interaction in Wearable Robotics
Understanding the physical interaction with wearable robots is essential to ensure safety and comfort. However, this interaction is complex in two key aspects: (1) the motion involved, and (2) the non-linear behaviour of soft tissues. Multiple approaches have been undertaken to better understand this interaction and to improve the quantitative metrics of physical interfaces or cuffs. As these two topics are closely interrelated, finite modelling and soft tissue characterisation offer valuable insights into pressure distribution and shear stress induced by the cuff. Nevertheless, current characterisation methods typically rely on a single fitting variable along one degree of freedom, which limits their applicability, given that interactions with wearable robots often involve multiple degrees of freedom. To address this limitation, this work introduces a dual-variable characterisation method, involving normal and tangential forces, aimed at identifying reliable material parameters and evaluating the impact of single-variable fitting on force and torque responses. This method demonstrates the importance of incorporating two variables into the characterisation process by analysing the normalized mean square error (NMSE) across different scenarios and material models, providing a foundation for simulation at the closest possible level, with a focus on the cuff and the human limb involved in the physical interaction between the user and the wearable robot.
comment: 36 pages, 10 figures, submitted and under-review in Journal of the Mechanical Behavior of Biomedical Materials
☆ Multi-Timescale Model Predictive Control for Slow-Fast Systems
Model Predictive Control (MPC) has established itself as the primary methodology for constrained control, enabling autonomy across diverse applications. While model fidelity is crucial in MPC, solving the corresponding optimization problem in real time remains challenging when combining long horizons with high-fidelity models that capture both short-term dynamics and long-term behavior. Motivated by results on the Exponential Decay of Sensitivities (EDS), which imply that, under certain conditions, the influence of modeling inaccuracies decreases exponentially along the prediction horizon, this paper proposes a multi-timescale MPC scheme for fast-sampled control. Tailored to systems with both fast and slow dynamics, the proposed approach improves computational efficiency by i) switching to a reduced model that captures only the slow, dominant dynamics and ii) exponentially increasing integration step sizes to progressively reduce model detail along the horizon. We evaluate the method on three practically motivated robotic control problems in simulation and observe speed-ups of up to an order of magnitude.
☆ Towards Deploying VLA without Fine-Tuning: Plug-and-Play Inference-Time VLA Policy Steering via Embodied Evolutionary Diffusion
Vision-Language-Action (VLA) models have demonstrated significant potential in real-world robotic manipulation. However, pre-trained VLA policies still suffer from substantial performance degradation during downstream deployment. Although fine-tuning can mitigate this issue, its reliance on costly demonstration collection and intensive computation makes it impractical in real-world settings. In this work, we introduce VLA-Pilot, a plug-and-play inference-time policy steering method for zero-shot deployment of pre-trained VLA without any additional fine-tuning or data collection. We evaluate VLA-Pilot on six real-world downstream manipulation tasks across two distinct robotic embodiments, encompassing both in-distribution and out-of-distribution scenarios. Experimental results demonstrate that VLA-Pilot substantially boosts the success rates of off-the-shelf pre-trained VLA policies, enabling robust zero-shot generalization to diverse tasks and embodiments. Experimental videos and code are available at: https://rip4kobe.github.io/vla-pilot/.
comment: 9 pages, 8 figures, submitted to IEEE RA-L
☆ RoboTidy : A 3D Gaussian Splatting Household Tidying Benchmark for Embodied Navigation and Action
Household tidying is an important application area, yet current benchmarks neither model user preferences nor support mobility, and they generalize poorly, making it hard to comprehensively assess integrated language-to-action capabilities. To address this, we propose RoboTidy, a unified benchmark for language-guided household tidying that supports Vision-Language-Action (VLA) and Vision-Language-Navigation (VLN) training and evaluation. RoboTidy provides 500 photorealistic 3D Gaussian Splatting (3DGS) household scenes (covering 500 objects and containers) with collisions, formulates tidying as an "Action (Object, Container)" list, and supplies 6.4k high-quality manipulation demonstration trajectories and 1.5k naviagtion trajectories to support both few-shot and large-scale training. We also deploy RoboTidy in the real world for object tidying, establishing an end-to-end benchmark for household tidying. RoboTidy offers a scalable platform and bridges a key gap in embodied AI by enabling holistic and realistic evaluation of language-guided robots.
☆ AsyncVLA: Asynchronous Flow Matching for Vision-Language-Action Models
Vision-language-action (VLA) models have recently emerged as a powerful paradigm for building generalist robots. However, traditional VLA models that generate actions through flow matching (FM) typically rely on rigid and uniform time schedules, i.e., synchronous FM (SFM). Without action context awareness and asynchronous self-correction, SFM becomes unstable in long-horizon tasks, where a single action error can cascade into failure. In this work, we propose asynchronous flow matching VLA (AsyncVLA), a novel framework that introduces temporal flexibility in asynchronous FM (AFM) and enables self-correction in action generation. AsyncVLA breaks from the vanilla SFM in VLA models by generating the action tokens in a non-uniform time schedule with action context awareness. Besides, our method introduces the confidence rater to extract confidence of the initially generated actions, enabling the model to selectively refine inaccurate action tokens before execution. Moreover, we propose a unified training procedure for SFM and AFM that endows a single model with both modes, improving KV-cache utilization. Extensive experiments on robotic manipulation benchmarks demonstrate that AsyncVLA is data-efficient and exhibits self-correction ability. AsyncVLA achieves state-of-the-art results across general embodied evaluations due to its asynchronous generation in AFM. Our code is available at https://github.com/YuhuaJiang2002/AsyncVLA.
☆ FlexiCup: Wireless Multimodal Suction Cup with Dual-Zone Vision-Tactile Sensing
Conventional suction cups lack sensing capabilities for contact-aware manipulation in unstructured environments. This paper presents FlexiCup, a fully wireless multimodal suction cup that integrates dual-zone vision-tactile sensing. The central zone dynamically switches between vision and tactile modalities via illumination control for contact detection, while the peripheral zone provides continuous spatial awareness for approach planning. FlexiCup supports both vacuum and Bernoulli suction modes through modular mechanical configurations, achieving complete wireless autonomy with onboard computation and power. We validate hardware versatility through dual control paradigms. Modular perception-driven grasping across structured surfaces with varying obstacle densities demonstrates comparable performance between vacuum (90.0% mean success) and Bernoulli (86.7% mean success) modes. Diffusion-based end-to-end learning achieves 73.3% success on inclined transport and 66.7% on orange extraction tasks. Ablation studies confirm that multi-head attention coordinating dual-zone observations provides 13% improvements for contact-aware manipulation. Hardware designs and firmware are available at https://anonymous.4open.science/api/repo/FlexiCup-DA7D/file/index.html?v=8f531b44.
☆ BIM-Discrepancy-Driven Active Sensing for Risk-Aware UAV-UGV Navigation
This paper presents a BIM-discrepancy-driven active sensing framework for cooperative navigation between unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) in dynamic construction environments. Traditional navigation approaches rely on static Building Information Modeling (BIM) priors or limited onboard perception. In contrast, our framework continuously fuses real-time LiDAR data from aerial and ground robots with BIM priors to maintain an evolving 2D occupancy map. We quantify navigation safety through a unified corridor-risk metric integrating occupancy uncertainty, BIM-map discrepancy, and clearance. When risk exceeds safety thresholds, the UAV autonomously re-scans affected regions to reduce uncertainty and enable safe replanning. Validation in PX4-Gazebo simulation with Robotec GPU LiDAR demonstrates that risk-triggered re-scanning reduces mean corridor risk by 58% and map entropy by 43% compared to static BIM navigation, while maintaining clearance margins above 0.4 m. Compared to frontier-based exploration, our approach achieves similar uncertainty reduction in half the mission time. These results demonstrate that integrating BIM priors with risk-adaptive aerial sensing enables scalable, uncertainty-aware autonomy for construction robotics.
☆ FACA: Fair and Agile Multi-Robot Collision Avoidance in Constrained Environments with Dynamic Priorities
Multi-robot systems are increasingly being used for critical applications such as rescuing injured people, delivering food and medicines, and monitoring key areas. These applications usually involve navigating at high speeds through constrained spaces such as small gaps. Navigating such constrained spaces becomes particularly challenging when the space is crowded with multiple heterogeneous agents all of which have urgent priorities. What makes the problem even harder is that during an active response situation, roles and priorities can quickly change on a dime without informing the other agents. In order to complete missions in such environments, robots must not only be safe, but also agile, able to dodge and change course at a moment's notice. In this paper, we propose FACA, a fair and agile collision avoidance approach where robots coordinate their tasks by talking to each other via natural language (just as people do). In FACA, robots balance safety with agility via a novel artificial potential field algorithm that creates an automatic ``roundabout'' effect whenever a conflict arises. Our experiments show that FACA achieves a improvement in efficiency, completing missions more than 3.5X faster than baselines with a time reduction of over 70% while maintaining robust safety margins.
☆ Searching in Space and Time: Unified Memory-Action Loops for Open-World Object Retrieval ICRA
Service robots must retrieve objects in dynamic, open-world settings where requests may reference attributes ("the red mug"), spatial context ("the mug on the table"), or past states ("the mug that was here yesterday"). Existing approaches capture only parts of this problem: scene graphs capture spatial relations but ignore temporal grounding, temporal reasoning methods model dynamics but do not support embodied interaction, and dynamic scene graphs handle both but remain closed-world with fixed vocabularies. We present STAR (SpatioTemporal Active Retrieval), a framework that unifies memory queries and embodied actions within a single decision loop. STAR leverages non-parametric long-term memory and a working memory to support efficient recall, and uses a vision-language model to select either temporal or spatial actions at each step. We introduce STARBench, a benchmark of spatiotemporal object search tasks across simulated and real environments. Experiments in STARBench and on a Tiago robot show that STAR consistently outperforms scene-graph and memory-only baselines, demonstrating the benefits of treating search in time and search in space as a unified problem.
comment: This paper is under review at ICRA
☆ SVBRD-LLM: Self-Verifying Behavioral Rule Discovery for Autonomous Vehicle Identification
As more autonomous vehicles operate on public roads, understanding real-world behavior of autonomous vehicles is critical to analyzing traffic safety, making policies, and public acceptance. This paper proposes SVBRD-LLM, a framework that automatically discovers, verifies, and applies interpretable behavioral rules from real traffic videos through zero-shot prompt engineering. The framework extracts vehicle trajectories using YOLOv8 and ByteTrack, computes kinematic features, and employs GPT-5 zero-shot prompting to compare autonomous and human-driven vehicles, generating 35 structured behavioral rule hypotheses. These rules are tested on a validation set, iteratively refined based on failure cases to filter spurious correlations, and compiled into a high-confidence rule library. The framework is evaluated on an independent test set for speed change prediction, lane change prediction, and autonomous vehicle identification tasks. Experiments on over 1500 hours of real traffic videos show that the framework achieves 90.0% accuracy and 93.3% F1-score in autonomous vehicle identification. The discovered rules clearly reveal distinctive characteristics of autonomous vehicles in speed control smoothness, lane change conservativeness, and acceleration stability, with each rule accompanied by semantic description, applicable context, and validation confidence.
☆ EGSA-PT:Edge-Guided Spatial Attention with Progressive Training for Monocular Depth Estimation and Segmentation of Transparent Objects
Transparent object perception remains a major challenge in computer vision research, as transparency confounds both depth estimation and semantic segmentation. Recent work has explored multi-task learning frameworks to improve robustness, yet negative cross-task interactions often hinder performance. In this work, we introduce Edge-Guided Spatial Attention (EGSA), a fusion mechanism designed to mitigate destructive interactions by incorporating boundary information into the fusion between semantic and geometric features. On both Syn-TODD and ClearPose benchmarks, EGSA consistently improved depth accuracy over the current state of the art method (MODEST), while preserving competitive segmentation performance, with the largest improvements appearing in transparent regions. Besides our fusion design, our second contribution is a multi-modal progressive training strategy, where learning transitions from edges derived from RGB images to edges derived from predicted depth images. This approach allows the system to bootstrap learning from the rich textures contained in RGB images, and then switch to more relevant geometric content in depth maps, while it eliminates the need for ground-truth depth at training time. Together, these contributions highlight edge-guided fusion as a robust approach capable of improving transparent object perception.
☆ Artificial intelligence approaches for energy-efficient laser cutting machines
This research addresses the significant challenges of energy consumption and environmental impact in laser cutting by proposing novel deep learning (DL) methodologies to achieve energy reduction. Recognizing the current lack of adaptive control and the open-loop nature of CO2 laser suction pumps, this study utilizes closed-loop configurations that dynamically adjust pump power based on both the material being cut and the smoke level generated. To implement this adaptive system, diverse material classification methods are introduced, including techniques leveraging lens-less speckle sensing with a customized Convolutional Neural Network (CNN) and an approach using a USB camera with transfer learning via the pre-trained VGG16 CNN model. Furthermore, a separate DL model for smoke level detection is employed to simultaneously refine the pump's power output. This integration prompts the exhaust suction pump to automatically halt during inactive times and dynamically adjust power during operation, leading to experimentally proven and remarkable energy savings, with results showing a 20% to 50% reduction in the smoke suction pump's energy consumption, thereby contributing substantially to sustainable development in the manufacturing sector.
☆ A visual study of ICP variants for Lidar Odometry
Odometry with lidar sensors is a state-of-the-art method to estimate the ego pose of a moving vehicle. Many implementations of lidar odometry use variants of the Iterative Closest Point (ICP) algorithm. Real-world effects such as dynamic objects, non-overlapping areas, and sensor noise diminish the accuracy of ICP. We build on a recently proposed method that makes these effects visible by visualizing the multidimensional objective function of ICP in two dimensions. We use this method to study different ICP variants in the context of lidar odometry. In addition, we propose a novel method to filter out dynamic objects and to address the ego blind spot problem.
comment: Iterative closest point; Registration; Odometry; Mapping
☆ Z-Merge: Multi-Agent Reinforcement Learning for On-Ramp Merging with Zone-Specific V2X Traffic Information
Ramp merging is a critical and challenging task for autonomous vehicles (AVs), particularly in mixed traffic environments with human-driven vehicles (HVs). Existing approaches typically rely on either lane-changing or inter-vehicle gap creation strategies based solely on local or neighboring information, often leading to suboptimal performance in terms of safety and traffic efficiency. In this paper, we present a V2X (vehicle-to-everything communication)-assisted Multiagent Reinforcement Learning (MARL) framework for on-ramp merging that effectively coordinates the complex interplay between lane-changing and inter-vehicle gap adaptation strategies by utilizing zone-specific global information available from a roadside unit (RSU). The merging control problem is formulated as a Multiagent Partially Observable Markov Decision Process (MA-POMDP), where agents leverage both local and global observations through V2X communication. To support both discrete and continuous control decisions, we design a hybrid action space and adopt a parameterized deep Q-learning approach. Extensive simulations, integrating the SUMO traffic simulator and the MOSAIC V2X simulator, demonstrate that our framework significantly improves merging success rate, traffic efficiency, and road safety across diverse traffic scenarios.
☆ Attacking Autonomous Driving Agents with Adversarial Machine Learning: A Holistic Evaluation with the CARLA Leaderboard
To autonomously control vehicles, driving agents use outputs from a combination of machine-learning (ML) models, controller logic, and custom modules. Although numerous prior works have shown that adversarial examples can mislead ML models used in autonomous driving contexts, it remains unclear if these attacks are effective at producing harmful driving actions for various agents, environments, and scenarios. To assess the risk of adversarial examples to autonomous driving, we evaluate attacks against a variety of driving agents, rather than against ML models in isolation. To support this evaluation, we leverage CARLA, an urban driving simulator, to create and evaluate adversarial examples. We create adversarial patches designed to stop or steer driving agents, stream them into the CARLA simulator at runtime, and evaluate them against agents from the CARLA Leaderboard, a public repository of best-performing autonomous driving agents from an annual research competition. Unlike prior work, we evaluate attacks against autonomous driving systems without creating or modifying any driving-agent code and against all parts of the agent included with the ML model. We perform a case-study investigation of two attack strategies against three open-source driving agents from the CARLA Leaderboard across multiple driving scenarios, lighting conditions, and locations. Interestingly, we show that, although some attacks can successfully mislead ML models into predicting erroneous stopping or steering commands, some driving agents use modules, such as PID control or GPS-based rules, that can overrule attacker-manipulated predictions from ML models.
comment: 12 pages
♻ ☆ OG-VLA: Orthographic Image Generation for 3D-Aware Vision-Language Action Model
We introduce OG-VLA, a novel architecture and learning framework that combines the generalization strengths of Vision Language Action models (VLAs) with the robustness of 3D-aware policies. We address the challenge of mapping natural language instructions and one or more RGBD observations to quasi-static robot actions. 3D-aware robot policies achieve state-of-the-art performance on precise robot manipulation tasks, but struggle with generalization to unseen instructions, scenes, and objects. On the other hand, VLAs excel at generalizing across instructions and scenes, but can be sensitive to camera and robot pose variations. We leverage prior knowledge embedded in language and vision foundation models to improve generalization of 3D-aware keyframe policies. OG-VLA unprojects input observations from diverse views into a point cloud which is then rendered from canonical orthographic views, ensuring input view invariance and consistency between input and output spaces. These canonical views are processed with a vision backbone, a Large Language Model (LLM), and an image diffusion model to generate images that encode the next position and orientation of the end-effector on the input scene. Evaluations on the Arnold and Colosseum benchmarks demonstrate state-of-the-art generalization to unseen environments, with over 40% relative improvements while maintaining robust performance in seen settings. We also show real-world adaption in 3 to 5 demonstrations along with strong generalization. Videos and resources at https://og-vla.github.io/
comment: 13 pages
♻ ☆ LED: Light Enhanced Depth Estimation at Night BMVC 2025
Nighttime camera-based depth estimation is a highly challenging task, especially for autonomous driving applications, where accurate depth perception is essential for ensuring safe navigation. Models trained on daytime data often fail in the absence of precise but costly LiDAR. Even vision foundation models trained on large amounts of data are unreliable in low-light conditions. In this work, we aim to improve the reliability of perception systems at night time. To this end, we introduce Light Enhanced Depth (LED), a novel, cost-effective approach that significantly improves depth estimation in low-light environments by harnessing a pattern projected by high definition headlights available in modern vehicles. LED leads to significant performance boosts across multiple depth-estimation architectures (encoder-decoder, Adabins, DepthFormer, Depth Anything V2) both on synthetic and real datasets. Furthermore, increased performances beyond illuminated areas reveal a holistic enhancement in scene understanding. Finally, we release the Nighttime Synthetic Drive Dataset, a synthetic and photo-realistic nighttime dataset, which comprises 49,990 comprehensively annotated images.
comment: BMVC 2025 (Poster). Code and dataset available on the project page : https://simondemoreau.github.io/LED/ 21 pages, 13 figures
♻ ☆ StyleDrive: Towards Driving-Style Aware Benchmarking of End-To-End Autonomous Driving
Personalization, while extensively studied in conventional autonomous driving pipelines, has been largely overlooked in the context of end-to-end autonomous driving (E2EAD), despite its critical role in fostering user trust, safety perception, and real-world adoption. A primary bottleneck is the absence of large-scale real-world datasets that systematically capture driving preferences, severely limiting the development and evaluation of personalized E2EAD models. In this work, we introduce the first large-scale real-world dataset explicitly curated for personalized E2EAD, integrating comprehensive scene topology with rich dynamic context derived from agent dynamics and semantics inferred via a fine-tuned vision-language model (VLM). We propose a hybrid annotation pipeline that combines behavioral analysis, rule-and-distribution-based heuristics, and subjective semantic modeling guided by VLM reasoning, with final refinement through human-in-the-loop verification. Building upon this dataset, we introduce the first standardized benchmark for systematically evaluating personalized E2EAD models. Empirical evaluations on state-of-the-art architectures demonstrate that incorporating personalized driving preferences significantly improves behavioral alignment with human demonstrations.
comment: 25 pages, 7 figures, 5 tables
♻ ☆ CARScenes: Semantic VLM Dataset for Safe Autonomous Driving
CAR-Scenes is a frame-level dataset for autonomous driving that enables training and evaluation of vision-language models (VLMs) for interpretable, scene-level understanding. We annotate 5,192 images drawn from Argoverse 1, Cityscapes, KITTI, and nuScenes using a 28-key category/sub-category knowledge base covering environment, road geometry, background-vehicle behavior, ego-vehicle behavior, vulnerable road users, sensor states, and a discrete severity scale (1-10), totaling 350+ leaf attributes. Labels are produced by a GPT-4o-assisted vision-language pipeline with human-in-the-loop verification; we release the exact prompts, post-processing rules, and per-field baseline model performance. CAR-Scenes also provides attribute co-occurrence graphs and JSONL records that support semantic retrieval, dataset triage, and risk-aware scenario mining across sources. To calibrate task difficulty, we include reproducible, non-benchmark baselines, notably a LoRA-tuned Qwen2-VL-2B with deterministic decoding, evaluated via scalar accuracy, micro-averaged F1 for list attributes, and severity MAE/RMSE on a fixed validation split. We publicly release the annotation and analysis scripts, including graph construction and evaluation scripts, to enable explainable, data-centric workflows for future intelligent vehicles. Dataset: https://github.com/Croquembouche/CAR-Scenes
comment: 8 pages, 6 figures, 7 tables
♻ ☆ DepthVision: Enabling Robust Vision-Language Models with GAN-Based LiDAR-to-RGB Synthesis for Autonomous Driving
Ensuring reliable autonomous operation when visual input is degraded remains a key challenge in intelligent vehicles and robotics. We present DepthVision, a multimodal framework that enables Vision--Language Models (VLMs) to exploit LiDAR data without any architectural changes or retraining. DepthVision synthesizes dense, RGB-like images from sparse LiDAR point clouds using a conditional GAN with an integrated refiner, and feeds these into off-the-shelf VLMs through their standard visual interface. A Luminance-Aware Modality Adaptation (LAMA) module fuses synthesized and real camera images by dynamically weighting each modality based on ambient lighting, compensating for degradation such as darkness or motion blur. This design turns LiDAR into a drop-in visual surrogate when RGB becomes unreliable, effectively extending the operational envelope of existing VLMs. We evaluate DepthVision on real and simulated datasets across multiple VLMs and safety-critical tasks, including vehicle-in-the-loop experiments. The results show substantial improvements in low-light scene understanding over RGB-only baselines while preserving full compatibility with frozen VLM architectures. These findings demonstrate that LiDAR-guided RGB synthesis is a practical pathway for integrating range sensing into modern vision-language systems for autonomous driving.
♻ ☆ Robust Adaptive Time-Varying Control Barrier Function with Application to Robotic Surface Treatment
Set invariance techniques such as control barrier functions (CBFs) can be used to enforce time-varying constraints such as keeping a safe distance from dynamic objects. However, existing methods for enforcing time-varying constraints often overlook model uncertainties. To address this issue, this paper proposes a CBFs-based robust adaptive controller design endowing time-varying constraints while considering parametric uncertainty and additive disturbances. To this end, we first leverage Robust adaptive Control Barrier Functions (RaCBFs) to handle model uncertainty, along with the concept of Input-to-State Safety (ISSf) to ensure robustness towards input disturbances. Furthermore, to alleviate the inherent conservatism in robustness, we also incorporate a set membership identification scheme. We demonstrate the proposed method on robotic surface treatment that requires time-varying force bounds to ensure uniform quality, in numerical simulation and real robotic setup, showing that the quality is formally guaranteed within an acceptable range.
comment: This work has been accepted to ECC 2025
♻ ☆ Tac2Motion: Contact-Aware Reinforcement Learning with Tactile Feedback for Robotic Hand Manipulation
This paper proposes Tac2Motion, a contact-aware reinforcement learning framework to facilitate the learning of contact-rich in-hand manipulation tasks, such as removing a lid. To this end, we propose tactile sensing-based reward shaping and incorporate the sensing into the observation space through embedding. The designed rewards encourage an agent to ensure firm grasping and smooth finger gaiting at the same time, leading to higher data efficiency and robust performance compared to the baseline. We verify the proposed framework on the opening a lid scenario, showing generalization of the trained policy into a couple of object types and various dynamics such as torsional friction. Lastly, the learned policy is demonstrated on the multi-fingered robot, Shadow Robot, showing that the control policy can be transferred to the real world. The video is available: https://youtu.be/poeJBPR7urQ.
comment: This paper has submitted to Dexterous Humanoid Manipulation Workshop, Humanoid 2025
♻ ☆ RynnEC: Bringing MLLMs into Embodied World
We introduce RynnEC, a video multimodal large language model designed for embodied cognition. Built upon a general-purpose vision-language foundation model, RynnEC incorporates a region encoder and a mask decoder, enabling flexible region-level video interaction. Despite its compact architecture, RynnEC achieves state-of-the-art performance in object property understanding, object segmentation, and spatial reasoning. Conceptually, it offers a region-centric video paradigm for the brain of embodied agents, providing fine-grained perception of the physical world and enabling more precise interactions. To mitigate the scarcity of annotated 3D datasets, we propose an egocentric video based pipeline for generating embodied cognition data. Furthermore, we introduce RynnEC-Bench, a region-centered benchmark for evaluating embodied cognitive capabilities. We anticipate that RynnEC will advance the development of general-purpose cognitive cores for embodied agents and facilitate generalization across diverse embodied tasks. The code, model checkpoints, and benchmark are available at: https://github.com/alibaba-damo-academy/RynnEC
comment: The technical report of RynnEC, an embodied cognition MLLM
♻ ☆ Combining High Level Scheduling and Low Level Control to Manage Fleets of Mobile Robots
The deployment of mobile robots for material handling in industrial environments requires scalable coordination of large fleets in dynamic settings. This paper presents a two-layer framework that combines high-level scheduling with low-level control. Tasks are assigned and scheduled using the compositional algorithm ComSat, which generates time-parameterized routes for each robot. These schedules are then used by a distributed Model Predictive Control (MPC) system in real time to compute local reference trajectories, accounting for static and dynamic obstacles. The approach ensures safe, collision-free operation, and supports rapid rescheduling in response to disruptions such as robot failures or environmental changes. We evaluate the method in simulated 2D environments with varying road capacities and traffic conditions, demonstrating high task completion rates and robust behavior even under congestion. The modular structure of the framework allows for computational tractability and flexibility, making it suitable for deployment in complex, real-world industrial scenarios.
♻ ☆ Benchmarking Population-Based Reinforcement Learning across Robotic Tasks with GPU-Accelerated Simulation
In recent years, deep reinforcement learning (RL) has shown its effectiveness in solving complex continuous control tasks. However, this comes at the cost of an enormous amount of experience required for training, exacerbated by the sensitivity of learning efficiency and the policy performance to hyperparameter selection, which often requires numerous trials of time-consuming experiments. This work leverages a Population-Based Reinforcement Learning (PBRL) approach and a GPU-accelerated physics simulator to enhance the exploration capabilities of RL by concurrently training multiple policies in parallel. The PBRL framework is benchmarked against three state-of-the-art RL algorithms -- PPO, SAC, and DDPG -- dynamically adjusting hyperparameters based on the performance of learning agents. The experiments are performed on four challenging tasks in Isaac Gym -- Anymal Terrain, Shadow Hand, Humanoid, Franka Nut Pick -- by analyzing the effect of population size and mutation mechanisms for hyperparameters. The results show that PBRL agents achieve superior performance, in terms of cumulative reward, compared to non-evolutionary baseline agents. Moreover, the trained agents are finally deployed in the real world for a Franka Nut Pick task. To our knowledge, this is the first sim-to-real attempt for deploying PBRL agents on real hardware. Code and videos of the learned policies are available on our project website (https://sites.google.com/view/pbrl).
comment: Accepted for publication at 2025 IEEE 21st International Conference on Automation Science and Engineering
♻ ☆ Generalizable and Fast Surrogates: Model Predictive Control of Articulated Soft Robots using Physics-Informed Neural Networks
Soft robots can revolutionize several applications with high demands on dexterity and safety. When operating these systems, real-time estimation and control require fast and accurate models. However, prediction with first-principles (FP) models is slow, and learned black-box models have poor generalizability. Physics-informed machine learning offers excellent advantages here, but it is currently limited to simple, often simulated systems without considering changes after training. We propose physics-informed neural networks (PINNs) for articulated soft robots (ASRs) with a focus on data efficiency. The amount of expensive real-world training data is reduced to a minimum -- one dataset in one system domain. Two hours of data in different domains are used for a comparison against two gold-standard approaches: In contrast to a recurrent neural network, the PINN provides a high generalizability. The prediction speed of an accurate FP model is exceeded with the PINN by up to a factor of 467 at slightly reduced accuracy. This enables nonlinear model predictive control (MPC) of a pneumatic ASR. Accurate position tracking with the MPC running at 47 Hz is achieved in six dynamic experiments.
comment: Accepted for publication in IEEE Transactions on Robotics (T-RO) 2025
♻ ☆ Spatial Policy: Guiding Visuomotor Robotic Manipulation with Spatial-Aware Modeling and Reasoning
Vision-centric hierarchical embodied models have demonstrated strong potential. However, existing methods lack spatial awareness capabilities, limiting their effectiveness in bridging visual plans to actionable control in complex environments. To address this problem, we propose Spatial Policy (SP), a unified spatial-aware visuomotor robotic manipulation framework via explicit spatial modeling and reasoning. Specifically, we first design a spatial-conditioned embodied video generation module to model spatially guided predictions through the spatial plan table. Then, we propose a flow-based action prediction module to infer executable actions with coordination. Finally, we propose a spatial reasoning feedback policy to refine the spatial plan table via dual-stage replanning. Extensive experiments show that SP substantially outperforms state-of-the-art baselines, achieving over 33% improvement on Meta-World and over 25% improvement on iTHOR, demonstrating strong effectiveness across 23 embodied control tasks. We additionally evaluate SP in real-world robotic experiments to verify its practical viability. SP enhances the practicality of embodied models for robotic control applications. Code and checkpoints are maintained at https://plantpotatoonmoon.github.io/SpatialPolicy/.
♻ ☆ MonoDream: Monocular Vision-Language Navigation with Panoramic Dreaming
Vision-Language Navigation (VLN) tasks often leverage panoramic RGB and depth inputs to provide rich spatial cues for action planning, but these sensors can be costly or less accessible in real-world deployments. Recent approaches based on Vision-Language Action (VLA) models achieve strong results with monocular input, yet they still lag behind methods using panoramic RGB-D information. We present MonoDream, a lightweight VLA framework that enables monocular agents to learn a Unified Navigation Representation (UNR). This shared feature representation jointly aligns navigation-relevant visual semantics (e.g., global layout, depth, and future cues) and language-grounded action intent, enabling more reliable action prediction. MonoDream further introduces Latent Panoramic Dreaming (LPD) tasks to supervise the UNR, which train the model to predict latent features of panoramic RGB and depth observations at both current and future steps based on only monocular input. Experiments on multiple VLN benchmarks show that MonoDream consistently improves monocular navigation performance and significantly narrows the gap with panoramic-based agents.
♻ ☆ Uni-Hand: Universal Hand Motion Forecasting in Egocentric Views IROS'25
Forecasting how human hands move in egocentric views is critical for applications like augmented reality and human-robot policy transfer. Recently, several hand trajectory prediction (HTP) methods have been developed to generate future possible hand waypoints, which still suffer from insufficient prediction targets, inherent modality gaps, entangled hand-head motion, and limited validation in downstream tasks. To address these limitations, we present a universal hand motion forecasting framework considering multi-modal input, multi-dimensional and multi-target prediction patterns, and multi-task affordances for downstream applications. We harmonize multiple modalities by vision-language fusion, global context incorporation, and task-aware text embedding injection, to forecast hand waypoints in both 2D and 3D spaces. A novel dual-branch diffusion is proposed to concurrently predict human head and hand movements, capturing their motion synergy in egocentric vision. By introducing target indicators, the prediction model can forecast the specific joint waypoints of the wrist or the fingers, besides the widely studied hand center points. In addition, we enable Uni-Hand to additionally predict hand-object interaction states (contact/separation) to facilitate downstream tasks better. As the first work to incorporate downstream task evaluation in the literature, we build novel benchmarks to assess the real-world applicability of hand motion forecasting algorithms. The experimental results on multiple publicly available datasets and our newly proposed benchmarks demonstrate that Uni-Hand achieves the state-of-the-art performance in multi-dimensional and multi-target hand motion forecasting. Extensive validation in multiple downstream tasks also presents its impressive human-robot policy transfer to enable robotic manipulation, and effective feature enhancement for action anticipation/recognition.
comment: Extended journal version of MMTwin (IROS'25)
♻ ☆ The Developments and Challenges towards Dexterous and Embodied Robotic Manipulation: A Survey
Achieving human-like dexterous robotic manipulation remains a central goal and a pivotal challenge in robotics. The development of Artificial Intelligence (AI) has allowed rapid progress in robotic manipulation. This survey summarizes the evolution of robotic manipulation from mechanical programming to embodied intelligence, alongside the transition from simple grippers to multi-fingered dexterous hands, outlining key characteristics and main challenges. Focusing on the current stage of embodied dexterous manipulation, we highlight recent advances in two critical areas: dexterous manipulation data collection (via simulation, human demonstrations, and teleoperation) and skill-learning frameworks (imitation and reinforcement learning). Then, based on the overview of the existing data collection paradigm and learning framework, three key challenges restricting the development of dexterous robotic manipulation are summarized and discussed.
♻ ☆ Large Language Models and 3D Vision for Intelligent Robotic Perception and Autonomy
With the rapid advancement of artificial intelligence and robotics, the integration of Large Language Models (LLMs) with 3D vision is emerging as a transformative approach to enhancing robotic sensing technologies. This convergence enables machines to perceive, reason and interact with complex environments through natural language and spatial understanding, bridging the gap between linguistic intelligence and spatial perception. This review provides a comprehensive analysis of state-of-the-art methodologies, applications and challenges at the intersection of LLMs and 3D vision, with a focus on next-generation robotic sensing technologies. We first introduce the foundational principles of LLMs and 3D data representations, followed by an in-depth examination of 3D sensing technologies critical for robotics. The review then explores key advancements in scene understanding, text-to-3D generation, object grounding and embodied agents, highlighting cutting-edge techniques such as zero-shot 3D segmentation, dynamic scene synthesis and language-guided manipulation. Furthermore, we discuss multimodal LLMs that integrate 3D data with touch, auditory and thermal inputs, enhancing environmental comprehension and robotic decision-making. To support future research, we catalog benchmark datasets and evaluation metrics tailored for 3D-language and vision tasks. Finally, we identify key challenges and future research directions, including adaptive model architectures, enhanced cross-modal alignment and real-time processing capabilities, which pave the way for more intelligent, context-aware and autonomous robotic sensing systems.
comment: 45 pages, 15 figures, MDPI Sensors Journal
♻ ☆ HACL: History-Aware Curriculum Learning for Fast Locomotion
We address the problem of agile and rapid locomotion, a key characteristic of quadrupedal and bipedal robots. We present a new algorithm that maintains stability and generates high-speed trajectories by considering the temporal aspect of locomotion. Our formulation takes into account past information based on a novel history-aware curriculum Learning (HACL) algorithm. We model the history of joint velocity commands with respect to the observed linear and angular rewards using a recurrent neural net (RNN). The hidden state helps the curriculum learn the relationship between the forward linear velocity and angular velocity commands and the rewards over a given time-step. We validate our approach on the MIT Mini Cheetah,Unitree Go1, and Go2 robots in a simulated environment and on a Unitree Go1 robot in real-world scenarios. In practice, HACL achieves peak forward velocity of 6.7 m/s for a given command velocity of 7m/s and outperforms prior locomotion algorithms by nearly 20%.
♻ ☆ SocialNav-Map: Dynamic Mapping with Human Trajectory Prediction for Zero-Shot Social Navigation
Social navigation in densely populated dynamic environments poses a significant challenge for autonomous mobile robots, requiring advanced strategies for safe interaction. Existing reinforcement learning (RL)-based methods require over 2000+ hours of extensive training and often struggle to generalize to unfamiliar environments without additional fine-tuning, limiting their practical application in real-world scenarios. To address these limitations, we propose SocialNav-Map, a novel zero-shot social navigation framework that combines dynamic human trajectory prediction with occupancy mapping, enabling safe and efficient navigation without the need for environment-specific training. Specifically, SocialNav-Map first transforms the task goal position into the constructed map coordinate system. Subsequently, it creates a dynamic occupancy map that incorporates predicted human movements as dynamic obstacles. The framework employs two complementary methods for human trajectory prediction: history prediction and orientation prediction. By integrating these predicted trajectories into the occupancy map, the robot can proactively avoid potential collisions with humans while efficiently navigating to its destination. Extensive experiments on the Social-HM3D and Social-MP3D datasets demonstrate that SocialNav-Map significantly outperforms state-of-the-art (SOTA) RL-based methods, which require 2,396 GPU hours of training. Notably, it reduces human collision rates by over 10% without necessitating any training in novel environments. By eliminating the need for environment-specific training, SocialNav-Map achieves superior navigation performance, paving the way for the deployment of social navigation systems in real-world environments characterized by diverse human behaviors. The code is available at: https://github.com/linglingxiansen/SocialNav-Map.
♻ ☆ SF-Loc: A Visual Mapping and Geo-Localization System based on Sparse Visual Structure Frames
For high-level geo-spatial applications and intelligent robotics, accurate global pose information is of crucial importance. Map-aided localization is a universal approach to overcome the limitations of global navigation satellite system (GNSS) in challenging environments. However, current solutions face challenges in terms of mapping flexibility, storage burden and re-localization performance. In this work, we present SF-Loc, a lightweight visual mapping and map-aided localization system, whose core idea is the map representation based on sparse frames with dense but compact depth, termed as visual structure frames. In the mapping phase, multi-sensor dense bundle adjustment (MS-DBA) is applied to construct geo-referenced visual structure frames. The local co-visbility is checked to keep the map sparsity and achieve incremental mapping. In the localization phase, coarse-to-fine vision-based localization is performed, in which multi-frame information and the map distribution are fully integrated. To be specific, the concept of spatially smoothed similarity (SSS) is proposed to overcome the place ambiguity, and pairwise frame matching is applied for efficient and robust pose estimation. Experimental results on the cross-season dataset verify the effectiveness of the system. In complex urban road scenarios, the map size is down to 3 MB per kilometer and stable decimeter-level re-localization can be achieved. The code will be made open-source soon (https://github.com/GREAT-WHU/SF-Loc).
♻ ☆ Rethinking Progression of Memory State in Robotic Manipulation: An Object-Centric Perspective AAAI 2026
As embodied agents operate in increasingly complex environments, the ability to perceive, track, and reason about individual object instances over time becomes essential, especially in tasks requiring sequenced interactions with visually similar objects. In these non-Markovian settings, key decision cues are often hidden in object-specific histories rather than the current scene. Without persistent memory of prior interactions (what has been interacted with, where it has been, or how it has changed) visuomotor policies may fail, repeat past actions, or overlook completed ones. To surface this challenge, we introduce LIBERO-Mem, a non-Markovian task suite for stress-testing robotic manipulation under object-level partial observability. It combines short- and long-horizon object tracking with temporally sequenced subgoals, requiring reasoning beyond the current frame. However, vision-language-action (VLA) models often struggle in such settings, with token scaling quickly becoming intractable even for tasks spanning just a few hundred frames. We propose Embodied-SlotSSM, a slot-centric VLA framework built for temporal scalability. It maintains spatio-temporally consistent slot identities and leverages them through two mechanisms: (1) slot-state-space modeling for reconstructing short-term history, and (2) a relational encoder to align the input tokens with action decoding. Together, these components enable temporally grounded, context-aware action prediction. Experiments show Embodied-SlotSSM's baseline performance on LIBERO-Mem and general tasks, offering a scalable solution for non-Markovian reasoning in object-centric robotic policies.
comment: Accepted at AAAI 2026
♻ ☆ iA*: Imperative Learning-based A* Search for Path Planning
Path planning, which aims to find a collision-free path between two locations, is critical for numerous applications ranging from mobile robots to self-driving vehicles. Traditional search-based methods like A* search guarantee path optimality but are often computationally expensive when handling large-scale maps. While learning-based methods alleviate this issue by incorporating learned constraints into their search procedures, they often face challenges like overfitting and reliance on extensive labeled datasets. To address these limitations, we propose Imperative A* (iA*), a novel self-supervised path planning framework leveraging bilevel optimization (BLO) and imperative learning (IL). The iA* framework integrates a neural network that predicts node costs with a differentiable A* search mechanism, enabling efficient self-supervised training via bilevel optimization. This integration significantly enhances the balance between search efficiency and path optimality while improving generalization to previously unseen maps. Extensive experiments demonstrate that iA* outperforms both classical and supervised learning-based methods, achieving an average reduction of 65.7\% in search area and 54.4\% in runtime, underscoring its effectiveness in robot path planning tasks.
♻ ☆ Bridging Language and Action: A Survey of Language-Conditioned Robot Manipulation
Language-conditioned robot manipulation is an emerging field aimed at enabling seamless communication and cooperation between humans and robotic agents by teaching robots to comprehend and execute instructions conveyed in natural language. This interdisciplinary area integrates scene understanding, language processing, and policy learning to bridge the gap between human instructions and robot actions. In this comprehensive survey, we systematically explore recent advancements in language-conditioned robot manipulation. We categorize existing methods based on the primary ways language is integrated into the robot system, namely language for state evaluation, language as a policy condition, and language for cognitive planning and reasoning. Specifically, we further analyze state-of-the-art techniques from four axes of action granularity, data and supervision regimes, system cost and latency, and environments and evaluations. Additionally, we highlight the key debates in the field. Finally, we discuss open challenges and future research directions, focusing on potentially enhancing generalization capabilities and addressing safety issues in language-conditioned robot manipulators.
♻ ☆ Natural Selection via Foundation Models for Soft Robot Evolution
Designing soft robots is a complex and iterative process that demands cross-disciplinary expertise in materials science, mechanics, and control, often relying on intuition and extensive experimentation. While foundation models, especially Large Language Models (LLMs), have demonstrated impressive reasoning abilities, their capacity to conduct embodied design remains largely unexplored. This paper introduces RoboCrafter-QA, a novel benchmark to evaluate whether LLMs can learn representations of soft robot designs that effectively bridge the gap between high-level task descriptions and low-level morphological and material choices. RoboCrafter-QA leverages the EvoGym simulator to generate a diverse set of soft robot design challenges, spanning robotic locomotion, manipulation, and balancing tasks. Our experiments with SOTA multi-modal LLMs reveal that while these models exhibit promising capabilities in learning design representations, they struggle with fine-grained distinctions between designs with subtle performance differences. To overcome these limitations, we finetune an efficient, open-source LLM that achieves SOTA performance on our benchmark, demonstrating superior capabilities in both design selection and direct generation of high-performing robot morphologies. Furthermore, we construct a physical replica of the modular soft robot and demonstrate a strong sim-to-real correlation, validating that superior benchmark performance has the potential to translate to effective real-world design selection. Our full system will be open-sourced to foster this exciting direction.
♻ ☆ Maestro: Orchestrating Robotics Modules with Vision-Language Models for Zero-Shot Generalist Robots
Today's best-explored routes towards generalist robots center on collecting ever larger "observations-in actions-out" robotics datasets to train large end-to-end models, copying a recipe that has worked for vision-language models (VLMs). We pursue a road less traveled: building generalist policies directly around VLMs by augmenting their general capabilities with specific robot capabilities encapsulated in a carefully curated set of perception, planning, and control modules. In Maestro, a VLM coding agent dynamically composes these modules into a programmatic policy for the current task and scenario. Maestro's architecture benefits from a streamlined closed-loop interface without many manually imposed structural constraints, and a comprehensive and diverse tool repertoire. As a result, it largely surpasses today's VLA models for zero-shot performance on challenging manipulation skills. Further, Maestro is easily extensible to incorporate new modules, easily editable to suit new embodiments such as a quadruped-mounted arm, and even easily adapts from minimal real-world experiences through local code edits.
comment: Plan to resubmit after significant revisions
Robotics 48
☆ Scaling Spatial Intelligence with Multimodal Foundation Models
Despite remarkable progress, multimodal foundation models still exhibit surprising deficiencies in spatial intelligence. In this work, we explore scaling up multimodal foundation models to cultivate spatial intelligence within the SenseNova-SI family, built upon established multimodal foundations including visual understanding models (i.e., Qwen3-VL and InternVL3) and unified understanding and generation models (i.e., Bagel). We take a principled approach to constructing high-performing and robust spatial intelligence by systematically curating SenseNova-SI-8M: eight million diverse data samples under a rigorous taxonomy of spatial capabilities. SenseNova-SI demonstrates unprecedented performance across a broad range of spatial intelligence benchmarks: 68.7% on VSI-Bench, 43.3% on MMSI, 85.6% on MindCube, 54.6% on ViewSpatial, and 50.1% on SITE, while maintaining strong general multimodal understanding (e.g., 84.9% on MMBench-En). More importantly, we analyze the impact of data scaling, discuss early signs of emergent generalization capabilities enabled by diverse data training, analyze the risk of overfitting and language shortcuts, present a preliminary study on spatial chain-of-thought reasoning, and validate the potential downstream application. SenseNova-SI is an ongoing project, and this report will be updated continuously. All newly trained multimodal foundation models are publicly released to facilitate further research in this direction.
comment: Model: https://huggingface.co/collections/sensenova/sensenova-si; Code: https://github.com/OpenSenseNova/SenseNova-SI
☆ From Power to Precision: Learning Fine-grained Dexterity for Multi-fingered Robotic Hands
Human grasps can be roughly categorized into two types: power grasps and precision grasps. Precision grasping enables tool use and is believed to have influenced human evolution. Today's multi-fingered robotic hands are effective in power grasps, but for tasks requiring precision, parallel grippers are still more widely adopted. This contrast highlights a key limitation in current robotic hand design: the difficulty of achieving both stable power grasps and precise, fine-grained manipulation within a single, versatile system. In this work, we bridge this gap by jointly optimizing the control and hardware design of a multi-fingered dexterous hand, enabling both power and precision manipulation. Rather than redesigning the entire hand, we introduce a lightweight fingertip geometry modification, represent it as a contact plane, and jointly optimize its parameters along with the corresponding control. Our control strategy dynamically switches between power and precision manipulation and simplifies precision control into parallel thumb-index motions, which proves robust for sim-to-real transfer. On the design side, we leverage large-scale simulation to optimize the fingertip geometry using a differentiable neural-physics surrogate model. We validate our approach through extensive experiments in both sim-to-real and real-to-real settings. Our method achieves an 82.5% zero-shot success rate on unseen objects in sim-to-real precision grasping, and a 93.3% success rate in challenging real-world tasks involving bread pinching. These results demonstrate that our co-design framework can significantly enhance the fine-grained manipulation ability of multi-fingered hands without reducing their ability for power grasps. Our project page is at https://jianglongye.com/power-to-precision
comment: Project page: https://jianglongye.com/power-to-precision
☆ OpenRoboCare: A Multimodal Multi-Task Expert Demonstration Dataset for Robot Caregiving IROS 2025
We present OpenRoboCare, a multimodal dataset for robot caregiving, capturing expert occupational therapist demonstrations of Activities of Daily Living (ADLs). Caregiving tasks involve complex physical human-robot interactions, requiring precise perception under occlusions, safe physical contact, and long-horizon planning. While recent advances in robot learning from demonstrations have shown promise, there is a lack of a large-scale, diverse, and expert-driven dataset that captures real-world caregiving routines. To address this gap, we collect data from 21 occupational therapists performing 15 ADL tasks on two manikins. The dataset spans five modalities: RGB-D video, pose tracking, eye-gaze tracking, task and action annotations, and tactile sensing, providing rich multimodal insights into caregiver movement, attention, force application, and task execution strategies. We further analyze expert caregiving principles and strategies, offering insights to improve robot efficiency and task feasibility. Additionally, our evaluations demonstrate that OpenRoboCare presents challenges for state-of-the-art robot perception and human activity recognition methods, both critical for developing safe and adaptive assistive robots, highlighting the value of our contribution. See our website for additional visualizations: https://emprise.cs.cornell.edu/robo-care/.
comment: IROS 2025
☆ PhysX-Anything: Simulation-Ready Physical 3D Assets from Single Image
3D modeling is shifting from static visual representations toward physical, articulated assets that can be directly used in simulation and interaction. However, most existing 3D generation methods overlook key physical and articulation properties, thereby limiting their utility in embodied AI. To bridge this gap, we introduce PhysX-Anything, the first simulation-ready physical 3D generative framework that, given a single in-the-wild image, produces high-quality sim-ready 3D assets with explicit geometry, articulation, and physical attributes. Specifically, we propose the first VLM-based physical 3D generative model, along with a new 3D representation that efficiently tokenizes geometry. It reduces the number of tokens by 193x, enabling explicit geometry learning within standard VLM token budgets without introducing any special tokens during fine-tuning and significantly improving generative quality. In addition, to overcome the limited diversity of existing physical 3D datasets, we construct a new dataset, PhysX-Mobility, which expands the object categories in prior physical 3D datasets by over 2x and includes more than 2K common real-world objects with rich physical annotations. Extensive experiments on PhysX-Mobility and in-the-wild images demonstrate that PhysX-Anything delivers strong generative performance and robust generalization. Furthermore, simulation-based experiments in a MuJoCo-style environment validate that our sim-ready assets can be directly used for contact-rich robotic policy learning. We believe PhysX-Anything can substantially empower a broad range of downstream applications, especially in embodied AI and physics-based simulation.
comment: Project page: https://physx-anything.github.io/
☆ Towards Affect-Adaptive Human-Robot Interaction: A Protocol for Multimodal Dataset Collection on Social Anxiety
Social anxiety is a prevalent condition that affects interpersonal interactions and social functioning. Recent advances in artificial intelligence and social robotics offer new opportunities to examine social anxiety in the human-robot interaction context. Accurate detection of affective states and behaviours associated with social anxiety requires multimodal datasets, where each signal modality provides complementary insights into its manifestations. However, such datasets remain scarce, limiting progress in both research and applications. To address this, this paper presents a protocol for multimodal dataset collection designed to reflect social anxiety in a human-robot interaction context. The dataset will consist of synchronised audio, video, and physiological recordings acquired from at least 70 participants, grouped according to their level of social anxiety, as they engage in approximately 10-minute interactive Wizard-of-Oz role-play scenarios with the Furhat social robot under controlled experimental conditions. In addition to multimodal data, the dataset will be enriched with contextual data providing deeper insight into individual variability in social anxiety responses. This work can contribute to research on affect-adaptive human-robot interaction by providing support for robust multimodal detection of social anxiety.
comment: Accepted at the Workshop on Benefits of pErsonalization and behAvioral adaptation in assistive Robots (BEAR 2025), held at the IEEE RO-MAN Conference 2025
☆ Contact-Safe Reinforcement Learning with ProMP Reparameterization and Energy Awareness
Reinforcement learning (RL) approaches based on Markov Decision Processes (MDPs) are predominantly applied in the robot joint space, often relying on limited task-specific information and partial awareness of the 3D environment. In contrast, episodic RL has demonstrated advantages over traditional MDP-based methods in terms of trajectory consistency, task awareness, and overall performance in complex robotic tasks. Moreover, traditional step-wise and episodic RL methods often neglect the contact-rich information inherent in task-space manipulation, especially considering the contact-safety and robustness. In this work, contact-rich manipulation tasks are tackled using a task-space, energy-safe framework, where reliable and safe task-space trajectories are generated through the combination of Proximal Policy Optimization (PPO) and movement primitives. Furthermore, an energy-aware Cartesian Impedance Controller objective is incorporated within the proposed framework to ensure safe interactions between the robot and the environment. Our experimental results demonstrate that the proposed framework outperforms existing methods in handling tasks on various types of surfaces in 3D environments, achieving high success rates as well as smooth trajectories and energy-safe interactions.
☆ ZeroDexGrasp: Zero-Shot Task-Oriented Dexterous Grasp Synthesis with Prompt-Based Multi-Stage Semantic Reasoning
Task-oriented dexterous grasping holds broad application prospects in robotic manipulation and human-object interaction. However, most existing methods still struggle to generalize across diverse objects and task instructions, as they heavily rely on costly labeled data to ensure task-specific semantic alignment. In this study, we propose \textbf{ZeroDexGrasp}, a zero-shot task-oriented dexterous grasp synthesis framework integrating Multimodal Large Language Models with grasp refinement to generate human-like grasp poses that are well aligned with specific task objectives and object affordances. Specifically, ZeroDexGrasp employs prompt-based multi-stage semantic reasoning to infer initial grasp configurations and object contact information from task and object semantics, then exploits contact-guided grasp optimization to refine these poses for physical feasibility and task alignment. Experimental results demonstrate that ZeroDexGrasp enables high-quality zero-shot dexterous grasping on diverse unseen object categories and complex task requirements, advancing toward more generalizable and intelligent robotic grasping.
☆ EL3DD: Extended Latent 3D Diffusion for Language Conditioned Multitask Manipulation
Acting in human environments is a crucial capability for general-purpose robots, necessitating a robust understanding of natural language and its application to physical tasks. This paper seeks to harness the capabilities of diffusion models within a visuomotor policy framework that merges visual and textual inputs to generate precise robotic trajectories. By employing reference demonstrations during training, the model learns to execute manipulation tasks specified through textual commands within the robot's immediate environment. The proposed research aims to extend an existing model by leveraging improved embeddings, and adapting techniques from diffusion models for image generation. We evaluate our methods on the CALVIN dataset, proving enhanced performance on various manipulation tasks and an increased long-horizon success rate when multiple tasks are executed in sequence. Our approach reinforces the usefulness of diffusion models and contributes towards general multitask manipulation.
comment: 10 pages; 2 figures; 1 table. Prprint submitted to the European Robotics Forum 2026
☆ Proceedings Seventh International Workshop on Formal Methods for Autonomous Systems
This EPTCS volume contains the papers from the Seventh International Workshop on Formal Methods for Autonomous Systems (FMAS 2025), which was held between the 17th and 19th of November 2025. The goal of the FMAS workshop series is to bring together leading researchers who are using formal methods to tackle the unique challenges that autonomous systems present, so that they can publish and discuss their work with a growing community of researchers. FMAS 2025 was co-located with the 20th International Conference on integrated Formal Methods (iFM'25), hosted by Inria Paris, France at the Inria Paris Center. In total, FMAS 2025 received 16 submissions from researchers at institutions in: Canada, China, France, Germany, Ireland, Italy, Japan, the Netherlands, Portugal, Sweden, the United States of America, and the United Kingdom. Though we received fewer submissions than last year, we are encouraged to see the submissions being sent from a wide range of countries. Submissions come from both past and new FMAS authors, which shows us that the existing community appreciates the network that FMAS has built over the past 7 years, while new authors also show the FMAS community's great potential of growth.
☆ GaRLILEO: Gravity-aligned Radar-Leg-Inertial Enhanced Odometry
Deployment of legged robots for navigating challenging terrains (e.g., stairs, slopes, and unstructured environments) has gained increasing preference over wheel-based platforms. In such scenarios, accurate odometry estimation is a preliminary requirement for stable locomotion, localization, and mapping. Traditional proprioceptive approaches, which rely on leg kinematics sensor modalities and inertial sensing, suffer from irrepressible vertical drift caused by frequent contact impacts, foot slippage, and vibrations, particularly affected by inaccurate roll and pitch estimation. Existing methods incorporate exteroceptive sensors such as LiDAR or cameras. Further enhancement has been introduced by leveraging gravity vector estimation to add additional observations on roll and pitch, thereby increasing the accuracy of vertical pose estimation. However, these approaches tend to degrade in feature-sparse or repetitive scenes and are prone to errors from double-integrated IMU acceleration. To address these challenges, we propose GaRLILEO, a novel gravity-aligned continuous-time radar-leg-inertial odometry framework. GaRLILEO decouples velocity from the IMU by building a continuous-time ego-velocity spline from SoC radar Doppler and leg kinematics information, enabling seamless sensor fusion which mitigates odometry distortion. In addition, GaRLILEO can reliably capture accurate gravity vectors leveraging a novel soft S2-constrained gravity factor, improving vertical pose accuracy without relying on LiDAR or cameras. Evaluated on a self-collected real-world dataset with diverse indoor-outdoor trajectories, GaRLILEO demonstrates state-of-the-art accuracy, particularly in vertical odometry estimation on stairs and slopes. We open-source both our dataset and algorithm to foster further research in legged robot odometry and SLAM. https://garlileo.github.io/GaRLILEO
☆ PIGEON: VLM-Driven Object Navigation via Points of Interest Selection
Navigating to a specified object in an unknown environment is a fundamental yet challenging capability of embodied intelligence. However, current methods struggle to balance decision frequency with intelligence, resulting in decisions lacking foresight or discontinuous actions. In this work, we propose PIGEON: Point of Interest Guided Exploration for Object Navigation with VLM, maintaining a lightweight and semantically aligned snapshot memory during exploration as semantic input for the exploration strategy. We use a large Visual-Language Model (VLM), named PIGEON-VL, to select Points of Interest (PoI) formed during exploration and then employ a lower-level planner for action output, increasing the decision frequency. Additionally, this PoI-based decision-making enables the generation of Reinforcement Learning with Verifiable Reward (RLVR) data suitable for simulators. Experiments on classic object navigation benchmarks demonstrate that our zero-shot transfer method achieves state-of-the-art performance, while RLVR further enhances the model's semantic guidance capabilities, enabling deep reasoning during real-time navigation.
☆ Collision-Free Navigation of Mobile Robots via Quadtree-Based Model Predictive Control
This paper presents an integrated navigation framework for Autonomous Mobile Robots (AMRs) that unifies environment representation, trajectory generation, and Model Predictive Control (MPC). The proposed approach incorporates a quadtree-based method to generate structured, axis-aligned collision-free regions from occupancy maps. These regions serve as both a basis for developing safe corridors and as linear constraints within the MPC formulation, enabling efficient and reliable navigation without requiring direct obstacle encoding. The complete pipeline combines safe-area extraction, connectivity graph construction, trajectory generation, and B-spline smoothing into one coherent system. Experimental results demonstrate consistent success and superior performance compared to baseline approaches across complex environments.
comment: This paper has been accepted by IEEE SII 2026
☆ Monolithic Units: Actuation, Sensing, and Simulation for Integrated Soft Robot Design
This work introduces the Monolithic Unit (MU), an actuator-lattice-sensor building block for soft robotics. The MU integrates pneumatic actuation, a compliant lattice envelope, and candidate sites for optical waveguide sensing into a single printed body. In order to study reproducibility and scalability, a parametric design framework establishes deterministic rules linking actuator chamber dimensions to lattice unit cell size. Experimental homogenization of lattice specimens provides effective material properties for finite element simulation. Within this simulation environment, sensor placement is treated as a discrete optimization problem, where a finite set of candidate waveguide paths derived from lattice nodes is evaluated by introducing local stiffening, and the configuration minimizing deviation from baseline mechanical response is selected. Optimized models are fabricated and experimentally characterized, validating the preservation of mechanical performance while enabling embedded sensing. The workflow is further extended to scaled units and a two-finger gripper, demonstrating generality of the MU concept. This approach advances monolithic soft robotic design by combining reproducible co-design rules with simulation-informed sensor integration.
comment: 8 pages, 6 figures, 1 algorithm, 1 table
☆ Count Every Rotation and Every Rotation Counts: Exploring Drone Dynamics via Propeller Sensing
As drone-based applications proliferate, paramount contactless sensing of airborne drones from the ground becomes indispensable. This work demonstrates concentrating on propeller rotational speed will substantially improve drone sensing performance and proposes an event-camera-based solution, \sysname. \sysname features two components: \textit{Count Every Rotation} achieves accurate, real-time propeller speed estimation by mitigating ultra-high sensitivity of event cameras to environmental noise. \textit{Every Rotation Counts} leverages these speeds to infer both internal and external drone dynamics. Extensive evaluations in real-world drone delivery scenarios show that \sysname achieves a sensing latency of 3$ms$ and a rotational speed estimation error of merely 0.23\%. Additionally, \sysname infers drone flight commands with 96.5\% precision and improves drone tracking accuracy by over 22\% when combined with other sensing modalities. \textit{ Demo: {\color{blue}https://eventpro25.github.io/EventPro/.} }
☆ ResAlignNet: A Data-Driven Approach for INS/DVL Alignment
Autonomous underwater vehicles rely on precise navigation systems that combine the inertial navigation system and the Doppler velocity log for successful missions in challenging environments where satellite navigation is unavailable. The effectiveness of this integration critically depends on accurate alignment between the sensor reference frames. Standard model-based alignment methods between these sensor systems suffer from lengthy convergence times, dependence on prescribed motion patterns, and reliance on external aiding sensors, significantly limiting operational flexibility. To address these limitations, this paper presents ResAlignNet, a data-driven approach using the 1D ResNet-18 architecture that transforms the alignment problem into deep neural network optimization, operating as an in-situ solution that requires only sensors on board without external positioning aids or complex vehicle maneuvers, while achieving rapid convergence in seconds. Additionally, the approach demonstrates the learning capabilities of Sim2Real transfer, enabling training in synthetic data while deploying in operational sensor measurements. Experimental validation using the Snapir autonomous underwater vehicle demonstrates that ResAlignNet achieves alignment accuracy within 0.8° using only 25 seconds of data collection, representing a 65\% reduction in convergence time compared to standard velocity-based methods. The trajectory-independent solution eliminates motion pattern requirements and enables immediate vehicle deployment without lengthy pre-mission procedures, advancing underwater navigation capabilities through robust sensor-agnostic alignment that scales across different operational scenarios and sensor specifications.
☆ Orientation-Free Neural Network-Based Bias Estimation for Low-Cost Stationary Accelerometers
Low-cost micro-electromechanical accelerometers are widely used in navigation, robotics, and consumer devices for motion sensing and position estimation. However, their performance is often degraded by bias errors. To eliminate deterministic bias terms a calibration procedure is applied under stationary conditions. It requires accelerom- eter leveling or complex orientation-dependent calibration procedures. To overcome those requirements, in this paper we present a model-free learning-based calibration method that estimates accelerometer bias under stationary conditions, without requiring knowledge of the sensor orientation and without the need to rotate the sensors. The proposed approach provides a fast, practical, and scalable solution suitable for rapid field deployment. Experimental validation on a 13.39-hour dataset collected from six accelerometers shows that the proposed method consistently achieves error levels more than 52% lower than traditional techniques. On a broader scale, this work contributes to the advancement of accurate calibration methods in orientation-free scenarios. As a consequence, it improves the reliability of low-cost inertial sensors in diverse scientific and industrial applications and eliminates the need for leveled calibration.
comment: 22 pages, 10 figures
☆ Unidirectional-Road-Network-Based Global Path Planning for Cleaning Robots in Semi-Structured Environments ICRA
Practical global path planning is critical for commercializing cleaning robots working in semi-structured environments. In the literature, global path planning methods for free space usually focus on path length and neglect the traffic rule constraints of the environments, which leads to high-frequency re-planning and increases collision risks. In contrast, those for structured environments are developed mainly by strictly complying with the road network representing the traffic rule constraints, which may result in an overlong path that hinders the overall navigation efficiency. This article proposes a general and systematic approach to improve global path planning performance in semi-structured environments. A unidirectional road network is built to represent the traffic constraints in semi-structured environments and a hybrid strategy is proposed to achieve a guaranteed planning result.Cutting across the road at the starting and the goal points are allowed to achieve a shorter path. Especially, a two-layer potential map is proposed to achieve a guaranteed performance when the starting and the goal points are in complex intersections. Comparative experiments are carried out to validate the effectiveness of the proposed method. Quantitative experimental results show that, compared with the state-of-art, the proposed method guarantees a much better balance between path length and the consistency with the road network.
comment: 2023 IEEE International Conference on Robotics and Automation (ICRA)
☆ DiffPixelFormer: Differential Pixel-Aware Transformer for RGB-D Indoor Scene Segmentation
Indoor semantic segmentation is fundamental to computer vision and robotics, supporting applications such as autonomous navigation, augmented reality, and smart environments. Although RGB-D fusion leverages complementary appearance and geometric cues, existing methods often depend on computationally intensive cross-attention mechanisms and insufficiently model intra- and inter-modal feature relationships, resulting in imprecise feature alignment and limited discriminative representation. To address these challenges, we propose DiffPixelFormer, a differential pixel-aware Transformer for RGB-D indoor scene segmentation that simultaneously enhances intra-modal representations and models inter-modal interactions. At its core, the Intra-Inter Modal Interaction Block (IIMIB) captures intra-modal long-range dependencies via self-attention and models inter-modal interactions with the Differential-Shared Inter-Modal (DSIM) module to disentangle modality-specific and shared cues, enabling fine-grained, pixel-level cross-modal alignment. Furthermore, a dynamic fusion strategy balances modality contributions and fully exploits RGB-D information according to scene characteristics. Extensive experiments on the SUN RGB-D and NYUDv2 benchmarks demonstrate that DiffPixelFormer-L achieves mIoU scores of 54.28% and 59.95%, outperforming DFormer-L by 1.78% and 2.75%, respectively. Code is available at https://github.com/gongyan1/DiffPixelFormer.
comment: 11 pages, 5 figures, 5 tables
☆ APP: A* Post-Processing Algorithm for Robots with Bidirectional Shortcut and Path Perturbation
Paths generated by A* and other graph-search-based planners are widely used in the robotic field. Due to the restricted node-expansion directions, the resulting paths are usually not the shortest. Besides, unnecessary heading changes, or zig-zag patterns, exist even when no obstacle is nearby, which is inconsistent with the human intuition that the path segments should be straight in wide-open space due to the absence of obstacles. This article puts forward a general and systematic post-processing algorithm for A* and other graph-search-based planners. The A* post-processing algorithm, called APP, is developed based on the costmap, which is widely used in commercial service robots. First, a bidirectional vertices reduction algorithm is proposed to tackle the asymm- etry of the path and the environments. During the forward and backward vertices reduction, a thorough shortcut strategy is put forward to improve the path-shortening performance and avoid unnecessary heading changes. Second, an iterative path perturbation algorithm is adopted to locally reduce the number of unnecessary heading changes and improve the path smooth- ness. Comparative experiments are then carried out to validate the superiority of the proposed method. Quantitative performance indexes show that APP outperforms the existing methods in planning time, path length as well as the number of unnecessary heading changes. Finally, field navigation experiments are carried out to verify the practicability of APP.
☆ CUTE-Planner: Confidence-aware Uneven Terrain Exploration Planner
Planetary exploration robots must navigate uneven terrain while building reliable maps for space missions. However, most existing methods incorporate traversability constraints but may not handle high uncertainty in elevation estimates near complex features like craters, do not consider exploration strategies for uncertainty reduction, and typically fail to address how elevation uncertainty affects navigation safety and map quality. To address the problems, we propose a framework integrating safe path generation, adaptive confidence updates, and confidence-aware exploration strategies. Using Kalman-based elevation estimation, our approach generates terrain traversability and confidence scores, then incorporates them into Graph-Based exploration Planner (GBP) to prioritize exploration of traversable low-confidence regions. We evaluate our framework through simulated lunar experiments using a novel low-confidence region ratio metric, achieving 69% uncertainty reduction compared to baseline GBP. In terms of mission success rate, our method achieves 100% while baseline GBP achieves 0%, demonstrating improvements in exploration safety and map reliability.
comment: Accepted in International Conference on Space Robotics 2025
☆ SplatSearch: Instance Image Goal Navigation for Mobile Robots using 3D Gaussian Splatting and Diffusion Models
The Instance Image Goal Navigation (IIN) problem requires mobile robots deployed in unknown environments to search for specific objects or people of interest using only a single reference goal image of the target. This problem can be especially challenging when: 1) the reference image is captured from an arbitrary viewpoint, and 2) the robot must operate with sparse-view scene reconstructions. In this paper, we address the IIN problem, by introducing SplatSearch, a novel architecture that leverages sparse-view 3D Gaussian Splatting (3DGS) reconstructions. SplatSearch renders multiple viewpoints around candidate objects using a sparse online 3DGS map, and uses a multi-view diffusion model to complete missing regions of the rendered images, enabling robust feature matching against the goal image. A novel frontier exploration policy is introduced which uses visual context from the synthesized viewpoints with semantic context from the goal image to evaluate frontier locations, allowing the robot to prioritize frontiers that are semantically and visually relevant to the goal image. Extensive experiments in photorealistic home and real-world environments validate the higher performance of SplatSearch against current state-of-the-art methods in terms of Success Rate and Success Path Length. An ablation study confirms the design choices of SplatSearch.
comment: Project Page: https://splat-search.github.io/
☆ GUIDE: Gaussian Unified Instance Detection for Enhanced Obstacle Perception in Autonomous Driving
In the realm of autonomous driving, accurately detecting surrounding obstacles is crucial for effective decision-making. Traditional methods primarily rely on 3D bounding boxes to represent these obstacles, which often fail to capture the complexity of irregularly shaped, real-world objects. To overcome these limitations, we present GUIDE, a novel framework that utilizes 3D Gaussians for instance detection and occupancy prediction. Unlike conventional occupancy prediction methods, GUIDE also offers robust tracking capabilities. Our framework employs a sparse representation strategy, using Gaussian-to-Voxel Splatting to provide fine-grained, instance-level occupancy data without the computational demands associated with dense voxel grids. Experimental validation on the nuScenes dataset demonstrates GUIDE's performance, with an instance occupancy mAP of 21.61, marking a 50\% improvement over existing methods, alongside competitive tracking capabilities. GUIDE establishes a new benchmark in autonomous perception systems, effectively combining precision with computational efficiency to better address the complexities of real-world driving environments.
☆ DiffuDepGrasp: Diffusion-based Depth Noise Modeling Empowers Sim2Real Robotic Grasping
Transferring the depth-based end-to-end policy trained in simulation to physical robots can yield an efficient and robust grasping policy, yet sensor artifacts in real depth maps like voids and noise establish a significant sim2real gap that critically impedes policy transfer. Training-time strategies like procedural noise injection or learned mappings suffer from data inefficiency due to unrealistic noise simulation, which is often ineffective for grasping tasks that require fine manipulation or dependency on paired datasets heavily. Furthermore, leveraging foundation models to reduce the sim2real gap via intermediate representations fails to mitigate the domain shift fully and adds computational overhead during deployment. This work confronts dual challenges of data inefficiency and deployment complexity. We propose DiffuDepGrasp, a deploy-efficient sim2real framework enabling zero-shot transfer through simulation-exclusive policy training. Its core innovation, the Diffusion Depth Generator, synthesizes geometrically pristine simulation depth with learned sensor-realistic noise via two synergistic modules. The first Diffusion Depth Module leverages temporal geometric priors to enable sample-efficient training of a conditional diffusion model that captures complex sensor noise distributions, while the second Noise Grafting Module preserves metric accuracy during perceptual artifact injection. With only raw depth inputs during deployment, DiffuDepGrasp eliminates computational overhead and achieves a 95.7% average success rate on 12-object grasping with zero-shot transfer and strong generalization to unseen objects.Project website: https://diffudepgrasp.github.io/.
☆ TOPP-DWR: Time-Optimal Path Parameterization of Differential-Driven Wheeled Robots Considering Piecewise-Constant Angular Velocity Constraints
Differential-driven wheeled robots (DWR) represent the quintessential type of mobile robots and find extensive appli- cations across the robotic field. Most high-performance control approaches for DWR explicitly utilize the linear and angular velocities of the trajectory as control references. However, existing research on time-optimal path parameterization (TOPP) for mobile robots usually neglects the angular velocity and joint vel- ocity constraints, which can result in degraded control perfor- mance in practical applications. In this article, a systematic and practical TOPP algorithm named TOPP-DWR is proposed for DWR and other mobile robots. First, the non-uniform B-spline is adopted to represent the initial trajectory in the task space. Second, the piecewise-constant angular velocity, as well as joint velocity, linear velocity, and linear acceleration constraints, are incorporated into the TOPP problem. During the construction of the optimization problem, the aforementioned constraints are uniformly represented as linear velocity constraints. To boost the numerical computational efficiency, we introduce a slack variable to reformulate the problem into second-order-cone programming (SOCP). Subsequently, comparative experiments are conducted to validate the superiority of the proposed method. Quantitative performance indexes show that TOPP-DWR achieves TOPP while adhering to all constraints. Finally, field autonomous navigation experiments are carried out to validate the practicability of TOPP-DWR in real-world applications.
☆ Air-Chamber Based Soft Six-Axis Force/Torque Sensor for Human-Robot Interaction
Soft multi-axis force/torque sensors provide safe and precise force interaction. Capturing the complete degree-of-freedom of force is imperative for accurate force measurement with six-axis force/torque sensors. However, cross-axis coupling can lead to calibration issues and decreased accuracy. In this instance, developing a soft and accurate six-axis sensor is a challenging task. In this paper, a soft air-chamber type six-axis force/torque sensor with 16-channel barometers is introduced, which housed in hyper-elastic air chambers made of silicone rubber. Additionally, an effective decoupling method is proposed, based on a rigid-soft hierarchical structure, which reduces the six-axis decoupling problem to two three-axis decoupling problems. Finite element model simulation and experiments demonstrate the compatibility of the proposed approach with reality. The prototype's sensing performance is quantitatively measured in terms of static load response, dynamic load response and dynamic response characteristic. It possesses a measuring range of 50 N force and 1 Nm torque, and the average deviation, repeatability, non-linearity and hysteresis are 4.9$\%$, 2.7$\%$, 5.8$\%$ and 6.7$\%$, respectively. The results indicate that the prototype exhibits satisfactory sensing performance while maintaining its softness due to the presence of soft air chambers.
☆ Towards High-Consistency Embodied World Model with Multi-View Trajectory Videos
Embodied world models aim to predict and interact with the physical world through visual observations and actions. However, existing models struggle to accurately translate low-level actions (e.g., joint positions) into precise robotic movements in predicted frames, leading to inconsistencies with real-world physical interactions. To address these limitations, we propose MTV-World, an embodied world model that introduces Multi-view Trajectory-Video control for precise visuomotor prediction. Specifically, instead of directly using low-level actions for control, we employ trajectory videos obtained through camera intrinsic and extrinsic parameters and Cartesian-space transformation as control signals. However, projecting 3D raw actions onto 2D images inevitably causes a loss of spatial information, making a single view insufficient for accurate interaction modeling. To overcome this, we introduce a multi-view framework that compensates for spatial information loss and ensures high-consistency with physical world. MTV-World forecasts future frames based on multi-view trajectory videos as input and conditioning on an initial frame per view. Furthermore, to systematically evaluate both robotic motion precision and object interaction accuracy, we develop an auto-evaluation pipeline leveraging multimodal large models and referring video object segmentation models. To measure spatial consistency, we formulate it as an object location matching problem and adopt the Jaccard Index as the evaluation metric. Extensive experiments demonstrate that MTV-World achieves precise control execution and accurate physical interaction modeling in complex dual-arm scenarios.
comment: 11 pages, 5 figures
☆ Uni-Hand: Universal Hand Motion Forecasting in Egocentric Views IROS'25
Analyzing hand-object interaction in egocentric vision facilitates VR/AR applications and human-robot policy transfer. Existing research has mostly focused on modeling the behavior paradigm of interactive actions (i.e., "how to interact"). However, the more challenging and fine-grained problem of capturing the critical moments of contact and separation between the hand and the target object (i.e., "when to interact") is still underexplored, which is crucial for immersive interactive experiences in mixed reality and robotic motion planning. Therefore, we formulate this problem as temporal interaction localization (TIL). Some recent works extract semantic masks as TIL references, but suffer from inaccurate object grounding and cluttered scenarios. Although current temporal action localization (TAL) methods perform well in detecting verb-noun action segments, they rely on category annotations during training and exhibit limited precision in localizing hand-object contact/separation moments. To address these issues, we propose a novel zero-shot approach dubbed EgoLoc to localize hand-object contact and separation timestamps in egocentric videos. EgoLoc introduces hand-dynamics-guided sampling to generate high-quality visual prompts. It exploits the vision-language model to identify contact/separation attributes, localize specific timestamps, and provide closed-loop feedback for further refinement. EgoLoc eliminates the need for object masks and verb-noun taxonomies, leading to generalizable zero-shot implementation. Comprehensive experiments on the public dataset and our novel benchmarks demonstrate that EgoLoc achieves plausible TIL for egocentric videos. It is also validated to effectively facilitate multiple downstream applications in egocentric vision and robotic manipulation tasks. Code and relevant data will be released at https://github.com/IRMVLab/EgoLoc.
comment: Extended journal version of MMTwin (IROS'25)
☆ Structured Imitation Learning of Interactive Policies through Inverse Games
Generative model-based imitation learning methods have recently achieved strong results in learning high-complexity motor skills from human demonstrations. However, imitation learning of interactive policies that coordinate with humans in shared spaces without explicit communication remains challenging, due to the significantly higher behavioral complexity in multi-agent interactions compared to non-interactive tasks. In this work, we introduce a structured imitation learning framework for interactive policies by combining generative single-agent policy learning with a flexible yet expressive game-theoretic structure. Our method explicitly separates learning into two steps: first, we learn individual behavioral patterns from multi-agent demonstrations using standard imitation learning; then, we structurally learn inter-agent dependencies by solving an inverse game problem. Preliminary results in a synthetic 5-agent social navigation task show that our method significantly improves non-interactive policies and performs comparably to the ground truth interactive policy using only 50 demonstrations. These results highlight the potential of structured imitation learning in interactive settings.
comment: Presented at the "Workshop on Generative Modeling Meets Human-Robot Interaction" at Robotics: Science and Systems 2025. Workshop website: https://sites.google.com/view/gai-hri/
☆ LIO-MARS: Non-uniform Continuous-time Trajectories for Real-time LiDAR-Inertial-Odometry
Autonomous robotic systems heavily rely on environment knowledge to safely navigate. For search & rescue, a flying robot requires robust real-time perception, enabled by complementary sensors. IMU data constrains acceleration and rotation, whereas LiDAR measures accurate distances around the robot. Building upon the LiDAR odometry MARS, our LiDAR-inertial odometry (LIO) jointly aligns multi-resolution surfel maps with a Gaussian mixture model (GMM) using a continuous-time B-spline trajectory. Our new scan window uses non-uniform temporal knot placement to ensure continuity over the whole trajectory without additional scan delay. Moreover, we accelerate essential covariance and GMM computations with Kronecker sums and products by a factor of 3.3. An unscented transform de-skews surfels, while a splitting into intra-scan segments facilitates motion compensation during spline optimization. Complementary soft constraints on relative poses and preintegrated IMU pseudo-measurements further improve robustness and accuracy. Extensive evaluation showcases the state-of-the-art quality of our LIO-MARS w.r.t. recent LIO systems on various handheld, ground and aerial vehicle-based datasets.
comment: submitted to T-RO, 19 pages
☆ Hessians in Birkhoff-Theoretic Trajectory Optimization
This paper derives various Hessians associated with Birkhoff-theoretic methods for trajectory optimization. According to a theorem proved in this paper, approximately 80% of the eigenvalues are contained in the narrow interval [-2, 4] for all Birkhoff-discretized optimal control problems. A preliminary analysis of computational complexity is also presented with further discussions on the grand challenge of solving a million point trajectory optimization problem.
comment: This paper appeared as an Engineering Note in the J. Guid. Control & Dynamics
☆ FICO: Finite-Horizon Closed-Loop Factorization for Unified Multi-Agent Path Finding
Multi-Agent Path Finding is a fundamental problem in robotics and AI, yet most existing formulations treat planning and execution separately and address variants of the problem in an ad hoc manner. This paper presents a system-level framework for MAPF that integrates planning and execution, generalizes across variants, and explicitly models uncertainties. At its core is the MAPF system, a formal model that casts MAPF as a control design problem encompassing classical and uncertainty-aware formulations. To solve it, we introduce Finite-Horizon Closed-Loop Factorization (FICO), a factorization-based algorithm inspired by receding-horizon control that exploits compositional structure for efficient closed-loop operation. FICO enables real-time responses -- commencing execution within milliseconds -- while scaling to thousands of agents and adapting seamlessly to execution-time uncertainties. Extensive case studies demonstrate that it reduces computation time by up to two orders of magnitude compared with open-loop baselines, while delivering significantly higher throughput under stochastic delays and agent arrivals. These results establish a principled foundation for analyzing and advancing MAPF through system-level modeling, factorization, and closed-loop design.
☆ A Trajectory-free Crash Detection Framework with Generative Approach and Segment Map Diffusion
Real-time crash detection is essential for developing proactive safety management strategy and enhancing overall traffic efficiency. To address the limitations associated with trajectory acquisition and vehicle tracking, road segment maps recording the individual-level traffic dynamic data were directly served in crash detection. A novel two-stage trajectory-free crash detection framework, was present to generate the rational future road segment map and identify crashes. The first-stage diffusion-based segment map generation model, Mapfusion, conducts a noisy-to-normal process that progressively adds noise to the road segment map until the map is corrupted to pure Gaussian noise. The denoising process is guided by sequential embedding components capturing the temporal dynamics of segment map sequences. Furthermore, the generation model is designed to incorporate background context through ControlNet to enhance generation control. Crash detection is achieved by comparing the monitored segment map with the generations from diffusion model in second stage. Trained on non-crash vehicle motion data, Mapfusion successfully generates realistic road segment evolution maps based on learned motion patterns and remains robust across different sampling intervals. Experiments on real-world crashes indicate the effectiveness of the proposed two-stage method in accurately detecting crashes.
comment: To be presented at TRB 2026 (TRBAM-26-01711) and a revised version will be submitted to Transportation Research Part C: Emerging Technologies
♻ ☆ GRIM: Task-Oriented Grasping with Conditioning on Generative Examples AAAI-26
Task-Oriented Grasping (TOG) requires robots to select grasps that are functionally appropriate for a specified task - a challenge that demands an understanding of task semantics, object affordances, and functional constraints. We present GRIM (Grasp Re-alignment via Iterative Matching), a training-free framework that addresses these challenges by leveraging Video Generation Models (VGMs) together with a retrieve-align-transfer pipeline. Beyond leveraging VGMs, GRIM can construct a memory of object-task exemplars sourced from web images, human demonstrations, or generative models. The retrieved task-oriented grasp is then transferred and refined by evaluating it against a set of geometrically stable candidate grasps to ensure both functional suitability and physical feasibility. GRIM demonstrates strong generalization and achieves state-of-the-art performance on standard TOG benchmarks. Project website: https://grim-tog.github.io
comment: Accepted to AAAI-26 (Oral). Project website: https://grim-tog.github.io
♻ ☆ On the Surprising Effectiveness of Spectral Clipping in Learning Stable Linear and Latent-Linear Dynamical Systems
When learning stable linear dynamical systems from data, three important properties are desirable: i) predictive accuracy, ii) verifiable stability, and iii) computational efficiency. Unconstrained minimization of prediction errors leads to high accuracy and efficiency but cannot guarantee stability. Existing methods to enforce stability often preserve accuracy, but do so only at the cost of increased computation. In this work, we investigate if a seemingly-naive procedure can simultaneously offer all three desiderata. Specifically, we consider a post-hoc procedure in which we surgically manipulate the spectrum of the linear system after it was learned using unconstrained least squares. We call this approach spectral clipping (SC) as it involves eigen decomposition and subsequent reconstruction of the system matrix after any eigenvalues whose magnitude exceeds one have been clipped to one (without altering the eigenvectors). We also show that SC can be readily combined with Koopman operators to learn nonlinear dynamical systems that can generate stable predictions of nonlinear phenomena, such as those underlying complex dexterous manipulation skills involving multi-fingered robotic hands. Through comprehensive experiments involving two different applications and publicly available benchmark datasets, we show that this simple technique can efficiently learn highly-accurate predictive dynamics that are provably-stable. Notably, we find that SC can match or outperform strong baselines while being orders-of-magnitude faster. Finally, we find that SC can learn stable robot policies even when the training data includes unsuccessful or truncated demonstrations. Our code and datasets can be found at https://github.com/GT-STAR-Lab/spec_clip.
♻ ☆ Bench2FreeAD: A Benchmark for Vision-based End-to-end Navigation in Unstructured Robotic Environments
Most current end-to-end (E2E) autonomous driving algorithms are built on standard vehicles in structured transportation scenarios, lacking exploration of robot navigation for unstructured scenarios such as auxiliary roads, campus roads, and indoor settings. This paper investigates E2E robot navigation in unstructured road environments. First, we introduce two data collection pipelines - one for real-world robot data and another for synthetic data generated using the Isaac Sim simulator, which together produce an unstructured robotics navigation dataset -- FreeWorld Dataset. Second, we fine-tuned an efficient E2E autonomous driving model -- VAD -- using our datasets to validate the performance and adaptability of E2E autonomous driving models in these environments. Results demonstrate that fine-tuning through our datasets significantly enhances the navigation potential of E2E autonomous driving models in unstructured robotic environments. Thus, this paper presents the first dataset targeting E2E robot navigation tasks in unstructured scenarios, and provides a benchmark based on vision-based E2E autonomous driving algorithms to facilitate the development of E2E navigation technology for logistics and service robots. The project is available on Github.
comment: 7 pages, 9 figures
♻ ☆ Benchmarking LLM Privacy Recognition for Social Robot Decision Making
While robots have previously utilized rule-based systems or probabilistic models for user interaction, the rapid evolution of large language models (LLMs) presents new opportunities to develop LLM-powered robots for enhanced human-robot interaction (HRI). To fully realize these capabilities, however, robots need to collect data such as audio, fine-grained images, video, and locations. As a result, LLMs often process sensitive personal information, particularly within private environments, such as homes. Given the tension between utility and privacy risks, evaluating how current LLMs manage sensitive data is critical. Specifically, we aim to explore the extent to which out-of-the-box LLMs are privacy-aware in the context of household robots. In this work, we present a set of privacy-relevant scenarios developed using the Contextual Integrity (CI) framework. We first surveyed users' privacy preferences regarding in-home robot behaviors and then examined how their privacy orientations affected their choices of these behaviors (N = 450). We then provided the same set of scenarios and questions to state-of-the-art LLMs (N = 10) and found that the agreement between humans and LLMs was generally low. To further investigate the capabilities of LLMs as potential privacy controllers, we implemented four additional prompting strategies and compared their results. We discuss the performance of the evaluated models as well as the implications and potential of AI privacy awareness in human-robot interaction.
comment: 18 pages, 7 figures. Dakota Sullivan and Shirley Zhang contributed equally to this work
♻ ☆ Certified Coil Geometry Learning for Short-Range Magnetic Actuation and Spacecraft Docking Application
This paper presents a learning-based framework for approximating an exact magnetic-field interaction model, supported by both numerical and experimental validation. High-fidelity magnetic-field interaction modeling is essential for achieving exceptional accuracy and responsiveness across a wide range of fields, including transportation, energy systems, medicine, biomedical robotics, and aerospace robotics. In aerospace engineering, magnetic actuation has been investigated as a fuel-free solution for multi-satellite attitude and formation control. Although the exact magnetic field can be computed from the Biot-Savart law, the associated computational cost is prohibitive, and prior studies have therefore relied on dipole approximations to improve efficiency. However, these approximations lose accuracy during proximity operations, leading to unstable behavior and even collisions. To address this limitation, we develop a learning-based approximation framework that faithfully reproduces the exact field while dramatically reducing computational cost. The proposed method additionally provides a certified error bound, derived from the number of training samples, ensuring reliable prediction accuracy. The learned model can also accommodate interactions between coils of different sizes through appropriate geometric transformations, without retraining. To verify the effectiveness of the proposed framework under challenging conditions, a spacecraft docking scenario is examined through both numerical simulations and experimental validation.
comment: Submitted to IEEE Robotics and Automation Letters
♻ ☆ Sequential Autonomous Exploration-Based Precise Mapping for Mobile Robots through Stepwise and Consistent Motions
This paper proposes a 2-D autonomous exploration and mapping framework for LiDAR-based SLAM mobile robots, designed to address the major challenges on low-cost platforms, including process instability, map drift, and increased risks of collisions and deadlocks. For frontier search, the local-global sampling architecture based on Rapidly-exploring Random Trees (RRTs) is employed. For local exploration, the proposed Self-Convergent RRT (SC-RRT) efficiently covers the reachable space within a finite time while the robot remains stationary, without relying on motion-induced sampling diversity. In addition, traversability checks during RRT expansion and global RRT pruning upon map updates eliminate unreachable frontiers, reducing potential collisions and deadlocks. For frontier point navigation, a stepwise consistent motion strategy is employed to generate motion trajectories that are more amenable to stable scan matching. The resulting straight-segment and in-place-rotation pattern improves scan-matching robustness and effectively suppresses map drift on resource-constrained platforms. For the process control, the framework serializes frontier point selection and navigation, avoiding oscillations caused by frequent goal changes in conventional parallelized processes. The waypoint retracing mechanism is incorporated to generate repeated observations, triggering loop closure detection and backend optimization in graph-based SLAM, thereby improving map consistency. Experiments in challenging simulated and real-world environments validate the effectiveness of the framework. Compared with baseline methods, the proposed framework achieves higher mapping success rates and stronger robustness on resource-constrained robots and maintains consistent mapping quality across various LiDAR field-of-view (FoV) configurations.
comment: 9 pages, 10 figures. This work has been submitted to the IEEE for possible publication
♻ ☆ Model Predictive Inferential Control of Neural State-Space Models for Autonomous Vehicle Motion Planning
Model predictive control (MPC) has proven useful in enabling safe and optimal motion planning for autonomous vehicles. In this paper, we investigate how to achieve MPC-based motion planning when a neural state-space model represents the vehicle dynamics. As the neural state-space model will lead to highly complex, nonlinear and nonconvex optimization landscapes, mainstream gradient-based MPC methods will struggle to provide viable solutions due to heavy computational load. In a departure, we propose the idea of model predictive inferential control (MPIC), which seeks to infer the best control decisions from the control objectives and constraints. Following this idea, we convert the MPC problem for motion planning into a Bayesian state estimation problem. Then, we develop a new implicit particle filtering/smoothing approach to perform the estimation. This approach is implemented as banks of unscented Kalman filters/smoothers and offers high sampling efficiency, fast computation, and estimation accuracy. We evaluate the MPIC approach through a simulation study of autonomous driving in different scenarios, along with an exhaustive comparison with gradient-based MPC. The simulation results show that the MPIC approach has considerable computational efficiency despite complex neural network architectures and the capability to solve large-scale MPC problems for neural state-space models.
♻ ☆ MonoDream: Monocular Vision-Language Navigation with Panoramic Dreaming
Vision-Language Navigation (VLN) tasks often leverage panoramic RGB and depth inputs to provide rich spatial cues for action planning, but these sensors can be costly or less accessible in real-world deployments. Recent approaches based on Vision-Language Action (VLA) models achieve strong results with monocular input, yet they still lag behind methods using panoramic RGB-D information. We present MonoDream, a lightweight VLA framework that enables monocular agents to learn a Unified Navigation Representation (UNR). This shared feature representation jointly aligns navigation-relevant visual semantics (e.g., global layout, depth, and future cues) and language-grounded action intent, enabling more reliable action prediction. MonoDream further introduces Latent Panoramic Dreaming (LPD) tasks to supervise the UNR, which train the model to predict latent features of panoramic RGB and depth observations at both current and future steps based on only monocular input. Experiments on multiple VLN benchmarks show that MonoDream consistently improves monocular navigation performance and significantly narrows the gap with panoramic-based agents.
♻ ☆ TopAY: Efficient Trajectory Planning for Differential Drive Mobile Manipulators via Topological Paths Search and Arc Length-Yaw Parameterization
Differential drive mobile manipulators combine the mobility of wheeled bases with the manipulation capability of multi-joint arms, enabling versatile applications but posing considerable challenges for trajectory planning due to their high-dimensional state space and nonholonomic constraints. This paper introduces TopAY, an optimization-based planning framework designed for efficient and safe trajectory generation for differential drive mobile manipulators. The framework employs a hierarchical initial value acquisition strategy, including topological paths search for the base and parallel sampling for the manipulator. A polynomial trajectory representation with arc length-yaw parameterization is also proposed to reduce optimization complexity while preserving dynamic feasibility. Extensive simulation and real-world experiments validate that TopAY achieves higher planning efficiency and success rates than state-of-the-art method in dense and complex scenarios. The source code is released at https://github.com/TopAY-Planner/TopAY .
comment: 8 pages, 5 figures
♻ ☆ Scalable Policy Evaluation with Video World Models
Training generalist policies for robotic manipulation has shown great promise, as they enable language-conditioned, multi-task behaviors across diverse scenarios. However, evaluating these policies remains difficult because real-world testing is expensive, time-consuming, and labor-intensive. It also requires frequent environment resets and carries safety risks when deploying unproven policies on physical robots. Manually creating and populating simulation environments with assets for robotic manipulation has not addressed these issues, primarily due to the significant engineering effort required and the often substantial sim-to-real gap, both in terms of physics and rendering. In this paper, we explore the use of action-conditional video generation models as a scalable way to learn world models for policy evaluation. We demonstrate how to incorporate action conditioning into existing pre-trained video generation models. This allows leveraging internet-scale in-the-wild online videos during the pre-training stage, and alleviates the need for a large dataset of paired video-action data, which is expensive to collect for robotic manipulation. Our paper examines the effect of dataset diversity, pre-trained weight and common failure cases for the proposed evaluation pipeline. Our experiments demonstrate that, across various metrics, including policy ranking and the correlation between actual policy values and predicted policy values, these models offer a promising approach for evaluating policies without requiring real-world interactions.
♻ ☆ Task-Driven Implicit Representations for Automated Design of LiDAR Systems
Imaging system design is a complex, time-consuming, and largely manual process; LiDAR design, ubiquitous in mobile devices, autonomous vehicles, and aerial imaging platforms, adds further complexity through unique spatial and temporal sampling requirements. In this work, we propose a framework for automated, task-driven LiDAR system design under arbitrary constraints. To achieve this, we represent LiDAR configurations in a continuous six-dimensional design space and learn task-specific implicit densities in this space via flow-based generative modeling. We then synthesize new LiDAR systems by modeling sensors as parametric distributions in 6D space and fitting these distributions to our learned implicit density using expectation-maximization, enabling efficient, constraint-aware LiDAR system design. We validate our method on diverse tasks in 3D vision, enabling automated LiDAR system design across real-world-inspired applications in face scanning, robotic tracking, and object detection.
♻ ☆ A Skeleton-Based Topological Planner for Exploration in Complex Unknown Environments ICRA 2025
The capability of autonomous exploration in complex, unknown environments is important in many robotic applications. While recent research on autonomous exploration have achieved much progress, there are still limitations, e.g., existing methods relying on greedy heuristics or optimal path planning are often hindered by repetitive paths and high computational demands. To address such limitations, we propose a novel exploration framework that utilizes the global topology information of observed environment to improve exploration efficiency while reducing computational overhead. Specifically, global information is utilized based on a skeletal topological graph representation of the environment geometry. We first propose an incremental skeleton extraction method based on wavefront propagation, based on which we then design an approach to generate a lightweight topological graph that can effectively capture the environment's structural characteristics. Building upon this, we introduce a finite state machine that leverages the topological structure to efficiently plan coverage paths, which can substantially mitigate the back-and-forth maneuvers (BFMs) problem. Experimental results demonstrate the superiority of our method in comparison with state-of-the-art methods. The source code will be made publicly available at: https://github.com/Haochen-Niu/STGPlanner.
comment: 7 pages, 7 figures. Accepted to be presented at the ICRA 2025
♻ ☆ Hierarchical LLMs In-the-Loop Optimization for Real-Time Multi-Robot Target Tracking under Unknown Hazards
Real-time multi-robot coordination in hazardous and adversarial environments requires fast, reliable adaptation to dynamic threats. While Large Language Models (LLMs) offer strong high-level reasoning capabilities, the lack of safety guarantees limits their direct use in critical decision-making. In this paper, we propose a hierarchical optimization framework that integrates LLMs into the decision loop for multi-robot target tracking in dynamic and hazardous environments. Rather than generating control actions directly, LLMs are used to generate task configuration and adjust parameters in a bi-level task allocation and planning problem. We formulate multi-robot coordination for tracking tasks as a bi-level optimization problem, with LLMs to reason about potential hazards in the environment and the status of the robot team and modify both the inner and outer levels of the optimization. This hierarchical approach enables real-time adjustments to the robots' behavior. Additionally, a human supervisor can offer broad guidance and assessments to address unexpected dangers, model mismatches, and performance issues arising from local minima. We validate our proposed framework in both simulation and real-world experiments with comprehensive evaluations, demonstrating its effectiveness and showcasing its capability for safe LLM integration for multi-robot systems.
♻ ☆ Towards Sharper Object Boundaries in Self-Supervised Depth Estimation BMVC 2025
Accurate monocular depth estimation is crucial for 3D scene understanding, but existing methods often blur depth at object boundaries, introducing spurious intermediate 3D points. While achieving sharp edges usually requires very fine-grained supervision, our method produces crisp depth discontinuities using only self-supervision. Specifically, we model per-pixel depth as a mixture distribution, capturing multiple plausible depths and shifting uncertainty from direct regression to the mixture weights. This formulation integrates seamlessly into existing pipelines via variance-aware loss functions and uncertainty propagation. Extensive evaluations on KITTI and VKITTIv2 show that our method achieves up to 35% higher boundary sharpness and improves point cloud quality compared to state-of-the-art baselines.
comment: BMVC 2025 Oral, 10 pages, 6 figures
♻ ☆ Long Duration Inspection of GNSS-Denied Environments with a Tethered UAV-UGV Marsupial System
Unmanned Aerial Vehicles (UAVs) have become essential tools in inspection and emergency response operations due to their high maneuverability and ability to access hard-to-reach areas. However, their limited battery life significantly restricts their use in long-duration missions. This paper presents a tethered marsupial robotic system composed of a UAV and an Unmanned Ground Vehicle (UGV), specifically designed for autonomous, long-duration inspection tasks in Global Navigation Satellite System (GNSS)-denied environments. The system extends the UAV's operational time by supplying power through a tether connected to high-capacity battery packs carried by the UGV. Our work details the hardware architecture based on off-the-shelf components to ensure replicability and describes our full-stack software framework used by the system, which is composed of open-source components and built upon the Robot Operating System (ROS). The proposed software architecture enables precise localization using a Direct LiDAR Localization (DLL) method and ensures safe path planning and coordinated trajectory tracking for the integrated UGV-tether-UAV system. We validate the system through three sets of field experiments involving (i) three manual flight endurance tests to estimate the operational duration, (ii) three experiments for validating the localization and the trajectory tracking systems, and (iii) three executions of an inspection mission to demonstrate autonomous inspection capabilities. The results of the experiments confirm the robustness and autonomy of the system in GNSS-denied environments. Finally, all experimental data have been made publicly available to support reproducibility and to serve as a common open dataset for benchmarking.
comment: 31 pages, 17 figures, 6 tables. Published in Drones. https://doi.org/10.3390/drones9110765
♻ ☆ Dynamically Extensible and Retractable Robotic Leg Linkages for Multi-task Execution in Search and Rescue Scenarios
Search and rescue (SAR) robots are required to quickly traverse terrain and perform high-force rescue tasks, necessitating both terrain adaptability and controlled high-force output. Few platforms exist today for SAR, and fewer still have the ability to cover both tasks of terrain adaptability and high-force output when performing extraction. While legged robots offer significant ability to traverse uneven terrain, they typically are unable to incorporate mechanisms that provide variable high-force outputs, unlike traditional wheel-based drive trains. This work introduces a novel concept for a dynamically extensible and retractable robot leg. Leveraging a dynamically extensible and retractable five-bar linkage design, it allows for mechanically switching between height-advantaged and force-advantaged configurations via a geometric transformation. A testbed evaluated leg performance across linkage geometries and operating modes, with empirical and analytical analyses conducted on stride length, force output, and stability. The results demonstrate that the morphing leg offers a promising path toward SAR robots that can both navigate terrain quickly and perform rescue tasks effectively.
Robotics 23
☆ ActiveGrasp: Information-Guided Active Grasping with Calibrated Energy-based Model
Grasping in a densely cluttered environment is a challenging task for robots. Previous methods tried to solve this problem by actively gathering multiple views before grasp pose generation. However, they either overlooked the importance of the grasp distribution for information gain estimation or relied on the projection of the grasp distribution, which ignores the structure of grasp poses on the SE(3) manifold. To tackle these challenges, we propose a calibrated energy-based model for grasp pose generation and an active view selection method that estimates information gain from grasp distribution. Our energy-based model captures the multi-modality nature of grasp distribution on the SE(3) manifold. The energy level is calibrated to the success rate of grasps so that the predicted distribution aligns with the real distribution. The next best view is selected by estimating the information gain for grasp from the calibrated distribution conditioned on the reconstructed environment, which could efficiently drive the robot to explore affordable parts of the target object. Experiments on simulated environments and real robot setups demonstrate that our model could successfully grasp objects in a cluttered environment with limited view budgets compared to previous state-of-the-art models. Our simulated environment can serve as a reproducible platform for future research on active grasping. The source code of our paper will be made public when the paper is released to the public.
comment: under review
☆ DR. Nav: Semantic-Geometric Representations for Proactive Dead-End Recovery and Navigation
We present DR. Nav (Dead-End Recovery-aware Navigation), a novel approach to autonomous navigation in scenarios where dead-end detection and recovery are critical, particularly in unstructured environments where robots must handle corners, vegetation occlusions, and blocked junctions. DR. Nav introduces a proactive strategy for navigation in unmapped environments without prior assumptions. Our method unifies dead-end prediction and recovery by generating a single, continuous, real-time semantic cost map. Specifically, DR. Nav leverages cross-modal RGB-LiDAR fusion with attention-based filtering to estimate per-cell dead-end likelihoods and recovery points, which are continuously updated through Bayesian inference to enhance robustness. Unlike prior mapping methods that only encode traversability, DR. Nav explicitly incorporates recovery-aware risk into the navigation cost map, enabling robots to anticipate unsafe regions and plan safer alternative trajectories. We evaluate DR. Nav across multiple dense indoor and outdoor scenarios and demonstrate an increase of 83.33% in accuracy in detection, a 52.4% reduction in time-to-goal (path efficiency), compared to state-of-the-art planners such as DWA, MPPI, and Nav2 DWB. Furthermore, the dead-end classifier functions
☆ Density-Driven Optimal Control for Non-Uniform Area Coverage in Decentralized Multi-Agent Systems Using Optimal Transport
This paper addresses the fundamental problem of non-uniform area coverage in multi-agent systems, where different regions require varying levels of attention due to mission-dependent priorities. Existing uniform coverage strategies are insufficient for realistic applications, and many non-uniform approaches either lack optimality guarantees or fail to incorporate crucial real-world constraints such as agent dynamics, limited operation time, the number of agents, and decentralized execution. To resolve these limitations, we propose a novel framework called Density-Driven Optimal Control (D2OC). The central idea of D2OC is the integration of optimal transport theory with multi-agent coverage control, enabling each agent to continuously adjust its trajectory to match a mission-specific reference density map. The proposed formulation establishes optimality by solving a constrained optimization problem that explicitly incorporates physical and operational constraints. The resulting control input is analytically derived from the Lagrangian of the objective function, yielding closed-form optimal solutions for linear systems and a generalizable structure for nonlinear systems. Furthermore, a decentralized data-sharing mechanism is developed to coordinate agents without reliance on global information. Comprehensive simulation studies demonstrate that D2OC achieves significantly improved non-uniform area coverage performance compared to existing methods, while maintaining scalability and decentralized implementability.
comment: Author Accepted Manuscript (AAM) of a paper accepted for publication in IEEE Transactions on Systems, Man, and Cybernetics: Systems
Prompt-Driven Domain Adaptation for End-to-End Autonomous Driving via In-Context RL
Despite significant progress and advances in autonomous driving, many end-to-end systems still struggle with domain adaptation (DA), such as transferring a policy trained under clear weather to adverse weather conditions. Typical DA strategies in the literature include collecting additional data in the target domain or re-training the model, or both. Both these strategies quickly become impractical as we increase scale and complexity of driving. These limitations have encouraged investigation into few-shot and zero-shot prompt-driven DA at inference time involving LLMs and VLMs. These methods work by adding a few state-action trajectories during inference to the prompt (similar to in-context learning). However, there are two limitations of such an approach: $(i)$ prompt-driven DA methods are currently restricted to perception tasks such as detection and segmentation and $(ii)$ they require expert few-shot data. In this work, we present a new approach to inference-time few-shot prompt-driven DA for closed-loop autonomous driving in adverse weather condition using in-context reinforcement learning (ICRL). Similar to other prompt-driven DA methods, our approach does not require any updates to the model parameters nor does it require additional data collection in adversarial weather regime. Furthermore, our approach advances the state-of-the-art in prompt-driven DA by extending to closed driving using general trajectories observed during inference. Our experiments using the CARLA simulator show that ICRL results in safer, more efficient, and more comfortable driving policies in the target domain compared to state-of-the-art prompt-driven DA baselines.
☆ Are LLMs The Way Forward? A Case Study on LLM-Guided Reinforcement Learning for Decentralized Autonomous Driving
Autonomous vehicle navigation in complex environments such as dense and fast-moving highways and merging scenarios remains an active area of research. A key limitation of RL is its reliance on well-specified reward functions, which often fail to capture the full semantic and social complexity of diverse, out-of-distribution situations. As a result, a rapidly growing line of research explores using Large Language Models (LLMs) to replace or supplement RL for direct planning and control, on account of their ability to reason about rich semantic context. However, LLMs present significant drawbacks: they can be unstable in zero-shot safety-critical settings, produce inconsistent outputs, and often depend on expensive API calls with network latency. This motivates our investigation into whether small, locally deployed LLMs (< 14B parameters) can meaningfully support autonomous highway driving through reward shaping rather than direct control. We present a case study comparing RL-only, LLM-only, and hybrid approaches, where LLMs augment RL rewards by scoring state-action transitions during training, while standard RL policies execute at test time. Our findings reveal that RL-only agents achieve moderate success rates (73-89%) with reasonable efficiency, LLM-only agents can reach higher success rates (up to 94%) but with severely degraded speed performance, and hybrid approaches consistently fall between these extremes. Critically, despite explicit efficiency instructions, LLM-influenced approaches exhibit systematic conservative bias with substantial model-dependent variability, highlighting important limitations of current small LLMs for safety-critical control tasks.
☆ Task-Aware Morphology Optimization of Planar Manipulators via Reinforcement Learning
In this work, Yoshikawa's manipulability index is used to investigate reinforcement learning (RL) as a framework for morphology optimization in planar robotic manipulators. A 2R manipulator tracking a circular end-effector path is first examined because this case has a known analytical optimum: equal link lengths and the second joint orthogonal to the first. This serves as a validation step to test whether RL can rediscover the optimum using reward feedback alone, without access to the manipulability expression or the Jacobian. Three RL algorithms (SAC, DDPG, and PPO) are compared with grid search and black-box optimizers, with morphology represented by a single action parameter phi that maps to the link lengths. All methods converge to the analytical solution, showing that numerical recovery of the optimum is possible without supplying analytical structure. Most morphology design tasks have no closed-form solutions, and grid or heuristic search becomes expensive as dimensionality increases. RL is therefore explored as a scalable alternative. The formulation used for the circular path is extended to elliptical and rectangular paths by expanding the action space to the full morphology vector (L1, L2, theta2). In these non-analytical settings, RL continues to converge reliably, whereas grid and black-box methods require far larger evaluation budgets. These results indicate that RL is effective for both recovering known optima and solving morphology optimization problems without analytical solutions.
comment: 10 pages, 11 figures, It is submitted as a journal option paper associated with the IFAC World Congress 2026
☆ EcoFlight: Finding Low-Energy Paths Through Obstacles for Autonomous Sensing Drones
Obstacle avoidance path planning for uncrewed aerial vehicles (UAVs), or drones, is rarely addressed in most flight path planning schemes, despite obstacles being a realistic condition. Obstacle avoidance can also be energy-intensive, making it a critical factor in efficient point-to-point drone flights. To address these gaps, we propose EcoFlight, an energy-efficient pathfinding algorithm that determines the lowest-energy route in 3D space with obstacles. The algorithm models energy consumption based on the drone propulsion system and flight dynamics. We conduct extensive evaluations, comparing EcoFlight with direct-flight and shortest-distance schemes. The simulation results across various obstacle densities show that EcoFlight consistently finds paths with lower energy consumption than comparable algorithms, particularly in high-density environments. We also demonstrate that a suitable flying speed can further enhance energy savings.
comment: Autonomous drone, A* algorithm, 3D environments, path planning, obstacle avoidance, energy efficiency, MIT Conference
☆ OPFormer: Object Pose Estimation leveraging foundation model with geometric encoding
We introduce a unified, end-to-end framework that seamlessly integrates object detection and pose estimation with a versatile onboarding process. Our pipeline begins with an onboarding stage that generates object representations from either traditional 3D CAD models or, in their absence, by rapidly reconstructing a high-fidelity neural representation (NeRF) from multi-view images. Given a test image, our system first employs the CNOS detector to localize target objects. For each detection, our novel pose estimation module, OPFormer, infers the precise 6D pose. The core of OPFormer is a transformer-based architecture that leverages a foundation model for robust feature extraction. It uniquely learns a comprehensive object representation by jointly encoding multiple template views and enriches these features with explicit 3D geometric priors using Normalized Object Coordinate Space (NOCS). A decoder then establishes robust 2D-3D correspondences to determine the final pose. Evaluated on the challenging BOP benchmarks, our integrated system demonstrates a strong balance between accuracy and efficiency, showcasing its practical applicability in both model-based and model-free scenarios.
☆ Botany Meets Robotics in Alpine Scree Monitoring
According to the European Union's Habitat Directive, habitat monitoring plays a critical role in response to the escalating problems posed by biodiversity loss and environmental degradation. Scree habitats, hosting unique and often endangered species, face severe threats from climate change due to their high-altitude nature. Traditionally, their monitoring has required highly skilled scientists to conduct extensive fieldwork in remote, potentially hazardous locations, making the process resource-intensive and time-consuming. This paper presents a novel approach for scree habitat monitoring using a legged robot to assist botanists in data collection and species identification. Specifically, we deployed the ANYmal C robot in the Italian Alpine bio-region in two field campaigns spanning two years and leveraged deep learning to detect and classify key plant species of interest. Our results demonstrate that agile legged robots can navigate challenging terrains and increase the frequency and efficiency of scree monitoring. When paired with traditional phytosociological surveys performed by botanists, this robotics-assisted protocol not only streamlines field operations but also enhances data acquisition, storage, and usage. The outcomes of this research contribute to the evolving landscape of robotics in environmental science, paving the way for a more comprehensive and sustainable approach to habitat monitoring and preservation.
comment: Published as Early Access in IEEE Transactions on Field Robotics. 19 pages, 13 figures
☆ Density-Driven Multi-Agent Coordination for Efficient Farm Coverage and Management in Smart Agriculture
The growing scale of modern farms has increased the need for efficient and adaptive multi-agent coverage strategies for pest, weed, and disease management. Traditional methods such as manual inspection and blanket pesticide spraying often lead to excessive chemical use, resource waste, and environmental impact. While unmanned aerial vehicles (UAVs) offer a promising platform for precision agriculture through targeted spraying and improved operational efficiency, existing UAV-based approaches remain limited by battery life, payload capacity, and scalability, especially in large fields where single-UAV or uniformly distributed spraying is insufficient. Although multi-UAV coordination has been explored, many current frameworks still assume uniform spraying and do not account for infestation severity, UAV dynamics, non-uniform resource allocation, or energy-efficient coordination. To address these limitations, this paper proposes a Density-Driven Optimal Control (D2OC) framework that integrates Optimal Transport (OT) theory with multi-UAV coverage control for large-scale agricultural spraying. The method supports non-uniform, priority-aware resource allocation based on infestation intensity, reducing unnecessary chemical application. UAVs are modeled as a linear time-varying (LTV) system to capture variations in mass and inertia during spraying missions. The D2OC control law, derived using Lagrangian mechanics, enables efficient coordination, balanced workload distribution, and improved mission duration. Simulation results demonstrate that the proposed approach outperforms uniform spraying and Spectral Multiscale Coverage (SMC) in coverage efficiency, chemical reduction, and operational sustainability, providing a scalable solution for smart agriculture.
comment: Author Accepted Manuscript (AAM) of a paper accepted for publication in the IEEE Transactions on Control Systems Technology (TCST)
☆ ClutterNav: Gradient-Guided Search for Efficient 3D Clutter Removal with Learned Costmaps
Dense clutter removal for target object retrieval presents a challenging problem, especially when targets are embedded deep within densely-packed configurations. It requires foresight to minimize overall changes to the clutter configuration while accessing target objects, avoiding stack destabilization and reducing the number of object removals required. Rule-based planners when applied to this problem, rely on rigid heuristics, leading to high computational overhead. End-to-end reinforcement learning approaches struggle with interpretability and generalizability over different conditions. To address these issues, we present ClutterNav, a novel decision-making framework that can identify the next best object to be removed so as to access a target object in a given clutter, while minimising stack disturbances. ClutterNav formulates the problem as a continuous reinforcement learning task, where each object removal dynamically updates the understanding of the scene. A removability critic, trained from demonstrations, estimates the cost of removing any given object based on geometric and spatial features. This learned cost is complemented by integrated gradients that assess how the presence or removal of surrounding objects influences the accessibility of the target. By dynamically prioritizing actions that balance immediate removability against long-term target exposure, ClutterNav achieves near human-like strategic sequencing, without predefined heuristics. The proposed approach is validated extensively in simulation and over real-world experiments. The results demonstrate real-time, occlusion-aware decision-making in partially observable environments.
☆ RoboAfford++: A Generative AI-Enhanced Dataset for Multimodal Affordance Learning in Robotic Manipulation and Navigation
Robotic manipulation and navigation are fundamental capabilities of embodied intelligence, enabling effective robot interactions with the physical world. Achieving these capabilities requires a cohesive understanding of the environment, including object recognition to localize target objects, object affordances to identify potential interaction areas and spatial affordances to discern optimal areas for both object placement and robot movement. While Vision-Language Models (VLMs) excel at high-level task planning and scene understanding, they often struggle to infer actionable positions for physical interaction, such as functional grasping points and permissible placement regions. This limitation stems from the lack of fine-grained annotations for object and spatial affordances in their training datasets. To tackle this challenge, we introduce RoboAfford++, a generative AI-enhanced dataset for multimodal affordance learning for both robotic manipulation and navigation. Our dataset comprises 869,987 images paired with 2.0 million question answering (QA) annotations, covering three critical tasks: object affordance recognition to identify target objects based on attributes and spatial relationships, object affordance prediction to pinpoint functional parts for manipulation, and spatial affordance localization to identify free space for object placement and robot navigation. Complementing this dataset, we propose RoboAfford-Eval, a comprehensive benchmark for assessing affordance-aware prediction in real-world scenarios, featuring 338 meticulously annotated samples across the same three tasks. Extensive experimental results reveal the deficiencies of existing VLMs in affordance learning, while fine-tuning on the RoboAfford++ dataset significantly enhances their ability to reason about object and spatial affordances, validating the dataset's effectiveness.
♻ ☆ Coarse-to-fine Q-Network with Action Sequence for Data-Efficient Reinforcement Learning
Predicting a sequence of actions has been crucial in the success of recent behavior cloning algorithms in robotics. Can similar ideas improve reinforcement learning (RL)? We answer affirmatively by observing that incorporating action sequences when predicting ground-truth return-to-go leads to lower validation loss. Motivated by this, we introduce Coarse-to-fine Q-Network with Action Sequence (CQN-AS), a novel value-based RL algorithm that learns a critic network that outputs Q-values over a sequence of actions, i.e., explicitly training the value function to learn the consequence of executing action sequences. Our experiments show that CQN-AS outperforms several baselines on a variety of sparse-reward humanoid control and tabletop manipulation tasks from BiGym and RLBench.
comment: 18 Pages. Website: https://younggyo.me/cqn-as/
Extendable Planning via Multiscale Diffusion
Long-horizon planning is crucial in complex environments, but diffusion-based planners like Diffuser are limited by the trajectory lengths observed during training. This creates a dilemma: long trajectories are needed for effective planning, yet they degrade model performance. In this paper, we introduce this extendable long-horizon planning challenge and propose a two-phase solution. First, Progressive Trajectory Extension incrementally constructs longer trajectories through multi-round compositional stitching. Second, the Hierarchical Multiscale Diffuser enables efficient training and inference over long horizons by reasoning across temporal scales. To avoid the need for multiple separate models, we propose Adaptive Plan Pondering and the Recursive HM-Diffuser, which unify hierarchical planning within a single model. Experiments show our approach yields strong performance gains, advancing scalable and efficient decision-making over long-horizons.
comment: First two authors contributed equally
♻ ☆ HumanoidGen: Data Generation for Bimanual Dexterous Manipulation via LLM Reasoning
For robotic manipulation, existing robotics datasets and simulation benchmarks predominantly cater to robot-arm platforms. However, for humanoid robots equipped with dual arms and dexterous hands, simulation tasks and high-quality demonstrations are notably lacking. Bimanual dexterous manipulation is inherently more complex, as it requires coordinated arm movements and hand operations, making autonomous data collection challenging. This paper presents HumanoidGen, an automated task creation and demonstration collection framework that leverages atomic dexterous operations and LLM reasoning to generate relational constraints. Specifically, we provide spatial annotations for both assets and dexterous hands based on the atomic operations, and perform an LLM planner to generate a chain of actionable spatial constraints for arm movements based on object affordances and scenes. To further improve planning ability, we employ a variant of Monte Carlo tree search to enhance LLM reasoning for long-horizon tasks and insufficient annotation. In experiments, we create a novel benchmark with augmented scenarios to evaluate the quality of the collected data. The results show that the performance of the 2D and 3D diffusion policies can scale with the generated dataset. Project page is https://openhumanoidgen.github.io.
comment: Project Page: https://openhumanoidgen.github.io
♻ ☆ FALCON: Learning Force-Adaptive Humanoid Loco-Manipulation
Humanoid loco-manipulation holds transformative potential for daily service and industrial tasks, yet achieving precise, robust whole-body control with 3D end-effector force interaction remains a major challenge. Prior approaches are often limited to lightweight tasks or quadrupedal/wheeled platforms. To overcome these limitations, we propose FALCON, a dual-agent reinforcement-learning-based framework for robust force-adaptive humanoid loco-manipulation. FALCON decomposes whole-body control into two specialized agents: (1) a lower-body agent ensuring stable locomotion under external force disturbances, and (2) an upper-body agent precisely tracking end-effector positions with implicit adaptive force compensation. These two agents are jointly trained in simulation with a force curriculum that progressively escalates the magnitude of external force exerted on the end effector while respecting torque limits. Experiments demonstrate that, compared to the baselines, FALCON achieves 2x more accurate upper-body joint tracking, while maintaining robust locomotion under force disturbances and achieving faster training convergence. Moreover, FALCON enables policy training without embodiment-specific reward or curriculum tuning. Using the same training setup, we obtain policies that are deployed across multiple humanoids, enabling forceful loco-manipulation tasks such as transporting payloads (0-20N force), cart-pulling (0-100N), and door-opening (0-40N) in the real world.
♻ ☆ Scaffolding Dexterous Manipulation with Vision-Language Models
Dexterous robotic hands are essential for performing complex manipulation tasks, yet remain difficult to train due to the challenges of demonstration collection and high-dimensional control. While reinforcement learning (RL) can alleviate the data bottleneck by generating experience in simulation, it typically relies on carefully designed, task-specific reward functions, which hinder scalability and generalization. Thus, contemporary works in dexterous manipulation have often bootstrapped from reference trajectories. These trajectories specify target hand poses that guide the exploration of RL policies and object poses that enable dense, task-agnostic rewards. However, sourcing suitable trajectories - particularly for dexterous hands - remains a significant challenge. Yet, the precise details in explicit reference trajectories are often unnecessary, as RL ultimately refines the motion. Our key insight is that modern vision-language models (VLMs) already encode the commonsense spatial and semantic knowledge needed to specify tasks and guide exploration effectively. Given a task description (e.g., "open the cabinet") and a visual scene, our method uses an off-the-shelf VLM to first identify task-relevant keypoints (e.g., handles, buttons) and then synthesize 3D trajectories for hand motion and object motion. Subsequently, we train a low-level residual RL policy in simulation to track these coarse trajectories or "scaffolds" with high fidelity. Across a number of simulated tasks involving articulated objects and semantic understanding, we demonstrate that our method is able to learn robust dexterous manipulation policies. Moreover, we showcase that our method transfers to real-world robotic hands without any human demonstrations or handcrafted rewards.
♻ ☆ Coordinated Humanoid Robot Locomotion with Symmetry Equivariant Reinforcement Learning Policy AAAI 2026
The human nervous system exhibits bilateral symmetry, enabling coordinated and balanced movements. However, existing Deep Reinforcement Learning (DRL) methods for humanoid robots neglect morphological symmetry of the robot, leading to uncoordinated and suboptimal behaviors. Inspired by human motor control, we propose Symmetry Equivariant Policy (SE-Policy), a new DRL framework that embeds strict symmetry equivariance in the actor and symmetry invariance in the critic without additional hyperparameters. SE-Policy enforces consistent behaviors across symmetric observations, producing temporally and spatially coordinated motions with higher task performance. Extensive experiments on velocity tracking tasks, conducted in both simulation and real-world deployment with the Unitree G1 humanoid robot, demonstrate that SE-Policy improves tracking accuracy by up to 40% compared to state-of-the-art baselines, while achieving superior spatial-temporal coordination. These results demonstrate the effectiveness of SE-Policy and its broad applicability to humanoid robots.
comment: AAAI 2026 accepted
♻ ☆ A Cooperation Control Framework Based on Admittance Control and Time-varying Passive Velocity Field Control for Human-Robot Co-carrying Tasks
Human-robot co-carrying tasks reveal their potential in both industrial and everyday applications by leveraging the strengths of both parties. Effective control of robots in these tasks requires managing the energy level in the closed-loop systems to prevent potential dangers while also minimizing motion errors to complete the shared tasks. The collaborative tasks pose numerous challenges due to varied human intentions in adapting to workspace characteristics, leading to human-robot conflicts. In this paper, we develop a cooperation control framework for human-robot co-carrying tasks constructed by utilizing reference generator and low-level controller to aim to achieve safe interaction and synchronized human-robot movement. Firstly, the human motion predictions are corrected in the event of prediction errors based on the conflicts measured by the interaction forces through admittance control, thereby mitigating conflict levels. Low-level controller using an energy-compensation passive velocity field control approach allows encoding the corrected motion to produce control torques for the robot. In this manner, the closed-loop robotic system is passive when the energy level exceeds the predetermined threshold, and otherwise. Furthermore, the proposed control approach ensures that the system's kinetic energy is compensated within a finite time interval. The passivity, stability, convergence rate of energy, and power flow regulation are analyzed from theoretical viewpoints. Human-in-the-loop experiments involving 18 participants have demonstrated that the proposed method significantly enhances task performance and reduces human workload, as evidenced by both objective metrics and subjective evaluations, with improvements confirmed by statistical tests (p < 0.05) relative to baseline methods.
comment: 15 pages, 13 figures. This is a preprint of an article accepted for publication in IEEE Transactions on Automation Science and Engineering
♻ ☆ A Communication-Latency-Aware Co-Simulation Platform for Safety and Comfort Evaluation of Cloud-Controlled ICVs
Testing cloud-controlled intelligent connected vehicles (ICVs) requires simulation environments that faithfully emulate both vehicle behavior and realistic communication latencies. This paper proposes a latency-aware co-simulation platform integrating CarMaker and Vissim to evaluate safety and comfort under real-world vehicle-to-cloud (V2C) latency conditions. Two communication latency models, derived from empirical 5G measurements in China and Hungary, are incorporated and statistically modeled using Gamma distributions. A proactive conflict module (PCM) is proposed to dynamically control background vehicles and generate safety-critical scenarios. The platform is validated through experiments involving an exemplary system under test (SUT) across six testing conditions combining two PCM modes (enabled/disabled) and three latency conditions (none, China, Hungary). Safety and comfort are assessed using metrics including collision rate, distance headway, post-encroachment time, and the spectral characteristics of longitudinal acceleration. Results show that the PCM effectively increases driving environment criticality, while V2C latency primarily affects ride comfort. These findings confirm the platform's effectiveness in systematically evaluating cloud-controlled ICVs under diverse testing conditions.
comment: 13 pages, 8 figures
♻ ☆ MASt3R-Fusion: Integrating Feed-Forward Visual Model with IMU, GNSS for High-Functionality SLAM
Visual SLAM is a cornerstone technique in robotics, autonomous driving and extended reality (XR), yet classical systems often struggle with low-texture environments, scale ambiguity, and degraded performance under challenging visual conditions. Recent advancements in feed-forward neural network-based pointmap regression have demonstrated the potential to recover high-fidelity 3D scene geometry directly from images, leveraging learned spatial priors to overcome limitations of traditional multi-view geometry methods. However, the widely validated advantages of probabilistic multi-sensor information fusion are often discarded in these pipelines. In this work, we propose MASt3R-Fusion,a multi-sensor-assisted visual SLAM framework that tightly integrates feed-forward pointmap regression with complementary sensor information, including inertial measurements and GNSS data. The system introduces Sim(3)-based visualalignment constraints (in the Hessian form) into a universal metric-scale SE(3) factor graph for effective information fusion. A hierarchical factor graph design is developed, which allows both real-time sliding-window optimization and global optimization with aggressive loop closures, enabling real-time pose tracking, metric-scale structure perception and globally consistent mapping. We evaluate our approach on both public benchmarks and self-collected datasets, demonstrating substantial improvements in accuracy and robustness over existing visual-centered multi-sensor SLAM systems. The code will be released open-source to support reproducibility and further research (https://github.com/GREAT-WHU/MASt3R-Fusion).
♻ ☆ EnerVerse: Envisioning Embodied Future Space for Robotics Manipulation NeurIPS 2025
We introduce EnerVerse, a generative robotics foundation model that constructs and interprets embodied spaces. EnerVerse employs a chunk-wise autoregressive video diffusion framework to predict future embodied spaces from instructions, enhanced by a sparse context memory for long-term reasoning. To model the 3D robotics world, we adopt a multi-view video representation, providing rich perspectives to address challenges like motion ambiguity and 3D grounding. Additionally, EnerVerse-D, a data engine pipeline combining generative modeling with 4D Gaussian Splatting, forms a self-reinforcing data loop to reduce the sim-to-real gap. Leveraging these innovations, EnerVerse translates 4D world representations into physical actions via a policy head (EnerVerse-A), achieving state-of-the-art performance in both simulation and real-world tasks. For efficiency, EnerVerse-A reuses features from the first denoising step and predicts action chunks, achieving about 280 ms per 8-step action chunk on a single RTX 4090. Further video demos, dataset samples could be found in our project page.
comment: Accepted by NeurIPS 2025. Website: https://sites.google.com/view/enerverse
♻ ☆ Dynamic Risk Assessment for Autonomous Vehicles from Spatio-Temporal Probabilistic Occupancy Heatmaps
Accurately assessing collision risk in dynamic traffic scenarios is a crucial requirement for trajectory planning in autonomous vehicles~(AVs) and enables a comprehensive safety evaluation of automated driving systems. To that end, this paper presents a novel probabilistic occupancy risk assessment~(PORA) metric. It uses spatiotemporal heatmaps as probabilistic occupancy predictions of surrounding traffic participants and estimates the risk of a collision along an AV's planned trajectory based on potential vehicle interactions. The use of probabilistic occupancy allows PORA to account for the uncertainty in future trajectories and velocities of traffic participants in the risk estimates. The risk from potential vehicle interactions is then further adjusted through a Cox model\edit{,} which considers the relative \edit{motion} between the AV and surrounding traffic participants. We demonstrate that the proposed approach enhances the accuracy of collision risk assessment in dynamic traffic scenarios, resulting in safer vehicle controllers, and provides a robust framework for real-time decision-making in autonomous driving systems. From evaluation in Monte Carlo simulations, PORA is shown to be more effective at accurately characterizing collision risk compared to other safety surrogate measures. Keywords: Dynamic Risk Assessment, Autonomous Vehicle, Probabilistic Occupancy, Driving Safety
Robotics 26
☆ Learning Adaptive Neural Teleoperation for Humanoid Robots: From Inverse Kinematics to End-to-End Control
Virtual reality (VR) teleoperation has emerged as a promising approach for controlling humanoid robots in complex manipulation tasks. However, traditional teleoperation systems rely on inverse kinematics (IK) solvers and hand-tuned PD controllers, which struggle to handle external forces, adapt to different users, and produce natural motions under dynamic conditions. In this work, we propose a learning-based neural teleoperation framework that replaces the conventional IK+PD pipeline with learned policies trained via reinforcement learning. Our approach learns to directly map VR controller inputs to robot joint commands while implicitly handling force disturbances, producing smooth trajectories, and adapting to user preferences. We train our policies in simulation using demonstrations collected from IK-based teleoperation as initialization, then fine-tune them with force randomization and trajectory smoothness rewards. Experiments on the Unitree G1 humanoid robot demonstrate that our learned policies achieve 34% lower tracking error, 45% smoother motions, and superior force adaptation compared to the IK baseline, while maintaining real-time performance (50Hz control frequency). We validate our approach on manipulation tasks including object pick-and-place, door opening, and bimanual coordination. These results suggest that learning-based approaches can significantly improve the naturalness and robustness of humanoid teleoperation systems.
comment: 9 pages, 5 figures
☆ Evaluating Model-Agnostic Meta-Learning on MetaWorld ML10 Benchmark: Fast Adaptation in Robotic Manipulation Tasks
Meta-learning algorithms enable rapid adaptation to new tasks with minimal data, a critical capability for real-world robotic systems. This paper evaluates Model-Agnostic Meta-Learning (MAML) combined with Trust Region Policy Optimization (TRPO) on the MetaWorld ML10 benchmark, a challenging suite of ten diverse robotic manipulation tasks. We implement and analyze MAML-TRPO's ability to learn a universal initialization that facilitates few-shot adaptation across semantically different manipulation behaviors including pushing, picking, and drawer manipulation. Our experiments demonstrate that MAML achieves effective one-shot adaptation with clear performance improvements after a single gradient update, reaching final success rates of 21.0% on training tasks and 13.2% on held-out test tasks. However, we observe a generalization gap that emerges during meta-training, where performance on test tasks plateaus while training task performance continues to improve. Task-level analysis reveals high variance in adaptation effectiveness, with success rates ranging from 0% to 80% across different manipulation skills. These findings highlight both the promise and current limitations of gradient-based meta-learning for diverse robotic manipulation, and suggest directions for future work in task-aware adaptation and structured policy architectures.
comment: 7 pages, 5 figures
☆ Multilaminate piezoelectric PVDF actuators to enhance performance of soft micro robots
Multilayer piezoelectric polyvinylidene fluoride (PVDF) actuators are a promising approach to enhance performance of soft microrobotic systems. In this work, we develop and characterize multilayer PVDF actuators with parallel voltage distribution across each layer, bridging a unique design space between brittle high-force PZT stacks and compliant but lower-bandwidth soft polymer actuators. We show the effects of layer thickness and number of layers in actuator performance and their agreement with a first principles model. By varying these parameters, we demonstrate actuators capable of >3 mm of free deflection, >20 mN of blocked force, and >=500 Hz, while operating at voltages as low as 150 volts. To illustrate their potential for robotic integration, we integrate our actuators into a planar, translating microrobot that leverages resonance to achieve locomotion with robustness to large perturbations.
☆ SAC-MoE: Reinforcement Learning with Mixture-of-Experts for Control of Hybrid Dynamical Systems with Uncertainty
Hybrid dynamical systems result from the interaction of continuous-variable dynamics with discrete events and encompass various systems such as legged robots, vehicles and aircrafts. Challenges arise when the system's modes are characterized by unobservable (latent) parameters and the events that cause system dynamics to switch between different modes are also unobservable. Model-based control approaches typically do not account for such uncertainty in the hybrid dynamics, while standard model-free RL methods fail to account for abrupt mode switches, leading to poor generalization. To overcome this, we propose SAC-MoE which models the actor of the Soft Actor-Critic (SAC) framework as a Mixture-of-Experts (MoE) with a learned router that adaptively selects among learned experts. To further improve robustness, we develop a curriculum-based training algorithm to prioritize data collection in challenging settings, allowing better generalization to unseen modes and switching locations. Simulation studies in hybrid autonomous racing and legged locomotion tasks show that SAC-MoE outperforms baselines (up to 6x) in zero-shot generalization to unseen environments. Our curriculum strategy consistently improves performance across all evaluated policies. Qualitative analysis shows that the interpretable MoE router activates different experts for distinct latent modes.
☆ Target Defense against Sequentially Arriving Intruders: Algorithm for Agents with Dubins Dynamics
We consider a variant of the target defense problem where a single defender is tasked to capture a sequence of incoming intruders. Both the defender and the intruders have non-holonomic dynamics. The intruders' objective is to breach the target perimeter without being captured by the defender, while the defender's goal is to capture as many intruders as possible. After one intruder breaches or is captured, the next appears randomly on a fixed circle surrounding the target. Therefore, the defender's final position in one game becomes its starting position for the next. We divide an intruder-defender engagement into two phases, partial information and full information, depending on the information available to the players. We address the capturability of an intruder by the defender using the notions of Dubins path and guarding arc. We quantify the percentage of capture for both finite and infinite sequences of incoming intruders. Finally, the theoretical results are verified through numerical examples using Monte-Carlo-type random trials of experiments.
☆ Intermittent Rendezvous Plans with Mixed Integer Linear Program for Large-Scale Multi-Robot Exploration
Multi-Robot Exploration (MRE) systems with communication constraints have proven efficient in accomplishing a variety of tasks, including search-and-rescue, stealth, and military operations. While some works focus on opportunistic approaches for efficiency, others concentrate on pre-planned trajectories or scheduling for increased interpretability. However, scheduling usually requires knowledge of the environment beforehand, which prevents its deployment in several domains due to related uncertainties (e.g., underwater exploration). In our previous work, we proposed an intermittent communications framework for MRE under communication constraints that uses scheduled rendezvous events to mitigate such limitations. However, the system was unable to generate optimal plans and had no mechanisms to follow the plan considering realistic trajectories, which is not suited for real-world deployments. In this work, we further investigate the problem by formulating the Multi-Robot Exploration with Communication Constraints and Intermittent Connectivity (MRE-CCIC) problem. We propose a Mixed-Integer Linear Program (MILP) formulation to generate rendezvous plans and a policy to follow them based on the Rendezvous Tracking for Unknown Scenarios (RTUS) mechanism. The RTUS is a simple rule to allow robots to follow the assigned plan, considering unknown conditions. Finally, we evaluated our method in a large-scale environment configured in Gazebo simulations. The results suggest that our method can follow the plan promptly and accomplish the task efficiently. We provide an open-source implementation of both the MILP plan generator and the large-scale MRE-CCIC.
comment: 9 pages, 9 figures, International Conference on Advanced Robotics
☆ SocialNav-Map: Dynamic Mapping with Human Trajectory Prediction for Zero-Shot Social Navigation
Social navigation in densely populated dynamic environments poses a significant challenge for autonomous mobile robots, requiring advanced strategies for safe interaction. Existing reinforcement learning (RL)-based methods require over 2000+ hours of extensive training and often struggle to generalize to unfamiliar environments without additional fine-tuning, limiting their practical application in real-world scenarios. To address these limitations, we propose SocialNav-Map, a novel zero-shot social navigation framework that combines dynamic human trajectory prediction with occupancy mapping, enabling safe and efficient navigation without the need for environment-specific training. Specifically, SocialNav-Map first transforms the task goal position into the constructed map coordinate system. Subsequently, it creates a dynamic occupancy map that incorporates predicted human movements as dynamic obstacles. The framework employs two complementary methods for human trajectory prediction: history prediction and orientation prediction. By integrating these predicted trajectories into the occupancy map, the robot can proactively avoid potential collisions with humans while efficiently navigating to its destination. Extensive experiments on the Social-HM3D and Social-MP3D datasets demonstrate that SocialNav-Map significantly outperforms state-of-the-art (SOTA) RL-based methods, which require 2,396 GPU hours of training. Notably, it reduces human collision rates by over 10% without necessitating any training in novel environments. By eliminating the need for environment-specific training, SocialNav-Map achieves superior navigation performance, paving the way for the deployment of social navigation systems in real-world environments characterized by diverse human behaviors. The code is available at: https://github.com/linglingxiansen/SocialNav-Map.
☆ Locally Optimal Solutions to Constraint Displacement Problems via Path-Obstacle Overlaps
We present a unified approach for constraint displacement problems in which a robot finds a feasible path by displacing constraints or obstacles. To this end, we propose a two stage process that returns locally optimal obstacle displacements to enable a feasible path for the robot. The first stage proceeds by computing a trajectory through the obstacles while minimizing an appropriate objective function. In the second stage, these obstacles are displaced to make the computed robot trajectory feasible, that is, collision-free. Several examples are provided that successfully demonstrate our approach on two distinct classes of constraint displacement problems.
comment: Robotics and Autonomous Systems
☆ Innovative Design of Multi-functional Supernumerary Robotic Limbs with Ellipsoid Workspace Optimization
Supernumerary robotic limbs (SRLs) offer substantial potential in both the rehabilitation of hemiplegic patients and the enhancement of functional capabilities for healthy individuals. Designing a general-purpose SRL device is inherently challenging, particularly when developing a unified theoretical framework that meets the diverse functional requirements of both upper and lower limbs. In this paper, we propose a multi-objective optimization (MOO) design theory that integrates grasping workspace similarity, walking workspace similarity, braced force for sit-to-stand (STS) movements, and overall mass and inertia. A geometric vector quantification method is developed using an ellipsoid to represent the workspace, aiming to reduce computational complexity and address quantification challenges. The ellipsoid envelope transforms workspace points into ellipsoid attributes, providing a parametric description of the workspace. Furthermore, the STS static braced force assesses the effectiveness of force transmission. The overall mass and inertia restricts excessive link length. To facilitate rapid and stable convergence of the model to high-dimensional irregular Pareto fronts, we introduce a multi-subpopulation correction firefly algorithm. This algorithm incorporates a strategy involving attractive and repulsive domains to effectively handle the MOO task. The optimized solution is utilized to redesign the prototype for experimentation to meet specified requirements. Six healthy participants and two hemiplegia patients participated in real experiments. Compared to the pre-optimization results, the average grasp success rate improved by 7.2%, while the muscle activity during walking and STS tasks decreased by an average of 12.7% and 25.1%, respectively. The proposed design theory offers an efficient option for the design of multi-functional SRL mechanisms.
☆ Variable Impedance Control for Floating-Base Supernumerary Robotic Leg in Walking Assistance
In human-robot systems, ensuring safety during force control in the presence of both internal and external disturbances is crucial. As a typical loosely coupled floating-base robot system, the supernumerary robotic leg (SRL) system is particularly susceptible to strong internal disturbances. To address the challenge posed by floating base, we investigated the dynamics model of the loosely coupled SRL and designed a hybrid position/force impedance controller to fit dynamic torque input. An efficient variable impedance control (VIC) method is developed to enhance human-robot interaction, particularly in scenarios involving external force disturbances. By dynamically adjusting impedance parameters, VIC improves the dynamic switching between rigidity and flexibility, so that it can adapt to unknown environmental disturbances in different states. An efficient real-time stability guaranteed impedance parameters generating network is specifically designed for the proposed SRL, to achieve shock mitigation and high rigidity supporting. Simulations and experiments validate the system's effectiveness, demonstrating its ability to maintain smooth signal transitions in flexible states while providing strong support forces in rigid states. This approach provides a practical solution for accommodating individual gait variations in interaction, and significantly advances the safety and adaptability of human-robot systems.
☆ Game-Theoretic Safe Multi-Agent Motion Planning with Reachability Analysis for Dynamic and Uncertain Environments (Extended Version)
Ensuring safe, robust, and scalable motion planning for multi-agent systems in dynamic and uncertain environments is a persistent challenge, driven by complex inter-agent interactions, stochastic disturbances, and model uncertainties. To overcome these challenges, particularly the computational complexity of coupled decision-making and the need for proactive safety guarantees, we propose a Reachability-Enhanced Dynamic Potential Game (RE-DPG) framework, which integrates game-theoretic coordination into reachability analysis. This approach formulates multi-agent coordination as a dynamic potential game, where the Nash equilibrium (NE) defines optimal control strategies across agents. To enable scalability and decentralized execution, we develop a Neighborhood-Dominated iterative Best Response (ND-iBR) scheme, built upon an iterated $\varepsilon$-BR (i$\varepsilon$-BR) process that guarantees finite-step convergence to an $\varepsilon$-NE. This allows agents to compute strategies based on local interactions while ensuring theoretical convergence guarantees. Furthermore, to ensure safety under uncertainty, we integrate a Multi-Agent Forward Reachable Set (MA-FRS) mechanism into the cost function, explicitly modeling uncertainty propagation and enforcing collision avoidance constraints. Through both simulations and real-world experiments in 2D and 3D environments, we validate the effectiveness of RE-DPG across diverse operational scenarios.
comment: 12 pages, 9 figures
☆ Towards Obstacle-Avoiding Control of Planar Snake Robots Exploring Neuro-Evolution of Augmenting Topologies
This work aims to develop a resource-efficient solution for obstacle-avoiding tracking control of a planar snake robot in a densely cluttered environment with obstacles. Particularly, Neuro-Evolution of Augmenting Topologies (NEAT) has been employed to generate dynamic gait parameters for the serpenoid gait function, which is implemented on the joint angles of the snake robot, thus controlling the robot on a desired dynamic path. NEAT is a single neural-network based evolutionary algorithm that is known to work extremely well when the input layer is of significantly higher dimension and the output layer is of a smaller size. For the planar snake robot, the input layer consists of the joint angles, link positions, head link position as well as obstacle positions in the vicinity. However, the output layer consists of only the frequency and offset angle of the serpenoid gait that control the speed and heading of the robot, respectively. Obstacle data from a LiDAR and the robot data from various sensors, along with the location of the end goal and time, are employed to parametrize a reward function that is maximized over iterations by selective propagation of superior neural networks. The implementation and experimental results showcase that the proposed approach is computationally efficient, especially for large environments with many obstacles. The proposed framework has been verified through a physics engine simulation study on PyBullet. The approach shows superior results to existing state-of-the-art methodologies and comparable results to the very recent CBRL approach with significantly lower computational overhead. The video of the simulation can be found here: https://sites.google.com/view/neatsnakerobot
comment: 9 pages, 6 figures
☆ Decoupled Action Head: Confining Task Knowledge to Conditioning Layers
Behavior Cloning (BC) is a data-driven supervised learning approach that has gained increasing attention with the success of scaling laws in language and vision domains. Among its implementations in robotic manipulation, Diffusion Policy (DP), with its two variants DP-CNN (DP-C) and DP-Transformer (DP-T), is one of the most effective and widely adopted models, demonstrating the advantages of predicting continuous action sequences. However, both DP and other BC methods remain constrained by the scarcity of paired training data, and the internal mechanisms underlying DP's effectiveness remain insufficiently understood, leading to limited generalization and a lack of principled design in model development. In this work, we propose a decoupled training recipe that leverages nearly cost-free kinematics-generated trajectories as observation-free data to pretrain a general action head (action generator). The pretrained action head is then frozen and adapted to novel tasks through feature modulation. Our experiments demonstrate the feasibility of this approach in both in-distribution and out-of-distribution scenarios. As an additional benefit, decoupling improves training efficiency; for instance, DP-C achieves up to a 41% speedup. Furthermore, the confinement of task-specific knowledge to the conditioning components under decoupling, combined with the near-identical performance of DP-C in both normal and decoupled training, indicates that the action generation backbone plays a limited role in robotic manipulation. Motivated by this observation, we introduce DP-MLP, which replaces the 244M-parameter U-Net backbone of DP-C with only 4M parameters of simple MLP blocks, achieving a 83.9% faster training speed under normal training and 89.1% under decoupling.
☆ SBAMP: Sampling Based Adaptive Motion Planning
Autonomous robotic systems must navigate complex, dynamic environments in real time, often facing unpredictable obstacles and rapidly changing conditions. Traditional sampling-based methods, such as RRT*, excel at generating collision-free paths but struggle to adapt to sudden changes without extensive replanning. Conversely, learning-based dynamical systems, such as the Stable Estimator of Dynamical Systems (SEDS), offer smooth, adaptive trajectory tracking but typically rely on pre-collected demonstration data, limiting their generalization to novel scenarios. This paper introduces Sampling-Based Adaptive Motion Planning (SBAMP), a novel framework that overcomes these limitations by integrating RRT* for global path planning with a SEDS-based local controller for continuous, adaptive trajectory adjustment. Our approach requires no pre-trained datasets and ensures smooth transitions between planned waypoints, maintaining stability through Lyapunov-based guarantees. We validate SBAMP in both simulated environments and real hardware using the RoboRacer platform, demonstrating superior performance in dynamic obstacle scenarios, rapid recovery from perturbations, and robust handling of sharp turns. Experimental results highlight SBAMP's ability to adapt in real time without sacrificing global path optimality, providing a scalable solution for dynamic, unstructured environments.
comment: 8 pages, 13 figures
☆ ARCSnake V2: An Amphibious Multi-Domain Screw-Propelled Snake-Like Robot ICRA
Robotic exploration in extreme environments such as caves, oceans, and planetary surfaces pose significant challenges, particularly in locomotion across diverse terrains. Conventional wheeled or legged robots often struggle in these contexts due to surface variability. This paper presents ARCSnake V2, an amphibious, screw propelled, snake like robot designed for teleoperated or autonomous locomotion across land, granular media, and aquatic environments. ARCSnake V2 combines the high mobility of hyper redundant snake robots with the terrain versatility of Archimedean screw propulsion. Key contributions include a water sealed mechanical design with serially linked screw and joint actuation, an integrated buoyancy control system, and teleoperation via a kinematically matched handheld controller. The robots design and control architecture enable multiple locomotion modes screwing, wheeling, and sidewinding with smooth transitions between them. Extensive experiments validate its underwater maneuverability, communication robustness, and force regulated actuation. These capabilities position ARCSnake V2 as a versatile platform for exploration, search and rescue, and environmental monitoring in multi domain settings.
comment: 8 pages, 9 figures, ICRA
☆ Bootstrapped LLM Semantics for Context-Aware Path Planning
Prompting robots with natural language (NL) has largely been studied as what task to execute (goal selection, skill sequencing) rather than how to execute that task safely and efficiently in semantically rich, human-centric spaces. We address this gap with a framework that turns a large language model (LLM) into a stochastic semantic sensor whose outputs modulate a classical planner. Given a prompt and a semantic map, we draw multiple LLM "danger" judgments and apply a Bayesian bootstrap to approximate a posterior over per-class risk. Using statistics from the posterior, we create a potential cost to formulate a path planning problem. Across simulated environments and a BIM-backed digital twin, our method adapts how the robot moves in response to explicit prompts and implicit contextual information. We present qualitative and quantitative results.
☆ Characterization and Evaluation of Screw-Based Locomotion Across Aquatic, Granular, and Transitional Media
Screw-based propulsion systems offer promising capabilities for amphibious mobility, yet face significant challenges in optimizing locomotion across water, granular materials, and transitional environments. This study presents a systematic investigation into the locomotion performance of various screw configurations in media such as dry sand, wet sand, saturated sand, and water. Through a principles-first approach to analyze screw performance, it was found that certain parameters are dominant in their impact on performance. Depending on the media, derived parameters inspired from optimizing heat sink design help categorize performance within the dominant design parameters. Our results provide specific insights into screw shell design and adaptive locomotion strategies to enhance the performance of screw-based propulsion systems for versatile amphibious applications.
♻ ☆ Large-Scale Multi-Robot Assembly Planning for Autonomous Manufacturing
Mobile autonomous robots have the potential to revolutionize manufacturing processes. However, employing large robot fleets in manufacturing requires addressing challenges including collision-free movement in a shared workspace, effective multi-robot collaboration to manipulate and transport large payloads, complex task allocation due to coupled manufacturing processes, and spatial planning for parallel assembly and transportation of nested subassemblies. We propose a full algorithmic stack for large-scale multi-robot assembly planning that addresses these challenges and can synthesize construction plans for complex assemblies with thousands of parts in a matter of minutes. Our approach takes in a CAD-like product specification and automatically plans a full-stack assembly procedure for a group of robots to manufacture the product. We propose an algorithmic stack that comprises: (i) an iterative radial layout optimization procedure to define a global staging layout for the manufacturing facility, (ii) a graph-repair mixed-integer program formulation and a modified greedy task allocation algorithm to optimally allocate robots and robot sub-teams to assembly and transport tasks, (iii) a geometric heuristic and a hill-climbing algorithm to plan collaborative carrying configurations of robot sub-teams, and (iv) a distributed control policy that enables robots to execute the assembly motion plan collision-free. We also present an open-source multi-robot manufacturing simulator implemented in Julia as a resource to the research community, to test our algorithms and to facilitate multi-robot manufacturing research more broadly. Our empirical results demonstrate the scalability and effectiveness of our approach by generating plans to manufacture a LEGO model of a Saturn V launch vehicle with 1845 parts, 306 subassemblies, and 250 robots in under three minutes on a standard laptop computer.
comment: Repository: https://github.com/sisl/ConstructionBots.jl
♻ ☆ AI-Driven Robotics for Optics
Optics is foundational to research in many areas of science and engineering, including nanophotonics, quantum information, materials science, biomedical imaging, and metrology. However, the design, assembly, and alignment of optical experiments remain predominantly manual, limiting throughput and reproducibility. Automating such experiments is challenging due to the strict, non-negotiable precision requirements and the diversity of optical configurations found in typical laboratories. Here, we introduce a platform that integrates generative artificial intelligence, computer vision, and robotics to automate free-space optical experiments. The platform translates user-defined goals into valid optical configurations, assembles them using a robotic arm, and performs micrometer-scale fine alignment using a robot-deployable tool. It then executes a range of automated measurements, including beam characterization, polarization mapping, and spectroscopy, with consistency surpassing that of human operators. This work demonstrates the first flexible, AI-driven automation platform for optics, offering a path towards remote operation, cloud labs, and high-throughput discovery in the optical sciences.
♻ ☆ Local Guidance for Configuration-Based Multi-Agent Pathfinding AAAI-26
Guidance is an emerging concept that improves the empirical performance of real-time, sub-optimal multi-agent pathfinding (MAPF) methods. It offers additional information to MAPF algorithms to mitigate congestion on a global scale by considering the collective behavior of all agents across the entire workspace. This global perspective helps reduce agents' waiting times, thereby improving overall coordination efficiency. In contrast, this study explores an alternative approach: providing local guidance in the vicinity of each agent. While such localized methods involve recomputation as agents move and may appear computationally demanding, we empirically demonstrate that supplying informative spatiotemporal cues to the planner can significantly improve solution quality without exceeding a moderate time budget. When applied to LaCAM, a leading configuration-based solver, this form of guidance establishes a new performance frontier for MAPF.
comment: To be presented at AAAI-26
♻ ☆ PB-NBV: Efficient Projection-Based Next-Best-View Planning Framework for Reconstruction of Unknown Objects
Completely capturing the three-dimensional (3D) data of an object is essential in industrial and robotic applications. The task of next-best-view (NBV) planning is to calculate the next optimal viewpoint based on the current data, gradually achieving a complete 3D reconstruction of the object. However, many existing NBV planning algorithms incur heavy computational costs due to the extensive use of ray-casting. Specifically, this framework refits different types of voxel clusters into ellipsoids based on the voxel structure. Then, the next optimal viewpoint is selected from the candidate views using a projection-based viewpoint quality evaluation function in conjunction with a global partitioning strategy. This process replaces extensive ray-casting, significantly improving the computational efficiency. Comparison experiments in the simulation environment show that our framework achieves the highest point cloud coverage with low computational time compared to other frameworks. The real-world experiments also confirm the efficiency and feasibility of the framework. Our method will be made open source to benefit the community.
comment: Accepted to IEEE Robotics and Automation Letters (RA-L), 2025
♻ ☆ DexGraspVLA: A Vision-Language-Action Framework Towards General Dexterous Grasping
Dexterous grasping remains a fundamental yet challenging problem in robotics. A general-purpose robot must be capable of grasping diverse objects in arbitrary scenarios. However, existing research typically relies on restrictive assumptions, such as single-object settings or limited environments, showing constrained generalization. We present DexGraspVLA, a hierarchical framework for robust generalization in language-guided general dexterous grasping and beyond. It utilizes a pre-trained Vision-Language model as the high-level planner and learns a diffusion-based low-level Action controller. The key insight to achieve generalization lies in iteratively transforming diverse language and visual inputs into domain-invariant representations via foundation models, where imitation learning can be effectively applied due to the alleviation of domain shift. Notably, our method achieves a 90+% dexterous grasping success rate under thousands of challenging unseen cluttered scenes. Empirical analysis confirms the consistency of internal model behavior across environmental variations, validating our design. DexGraspVLA also, for the first time, simultaneously demonstrates free-form long-horizon prompt execution, robustness to adversarial objects and human disturbance, and failure recovery. Extended application to nonprehensile grasping further proves its generality. Project website: https://dexgraspvla.github.io.
comment: 18 pages, 11 figures
♻ ☆ Whole-Body Control Framework for Humanoid Robots with Heavy Limbs: A Model-Based Approach
Humanoid robots often face significant balance issues due to the motion of their heavy limbs. These challenges are particularly pronounced when attempting dynamic motion or operating in environments with irregular terrain. To address this challenge, this manuscript proposes a whole-body control framework for humanoid robots with heavy limbs, using a model-based approach that combines a kino-dynamics planner and a hierarchical optimization problem. The kino-dynamics planner is designed as a model predictive control (MPC) scheme to account for the impact of heavy limbs on mass and inertia distribution. By simplifying the robot's system dynamics and constraints, the planner enables real-time planning of motion and contact forces. The hierarchical optimization problem is formulated using Hierarchical Quadratic Programming (HQP) to minimize limb control errors and ensure compliance with the policy generated by the kino-dynamics planner. Experimental validation of the proposed framework demonstrates its effectiveness. The humanoid robot with heavy limbs controlled by the proposed framework can achieve dynamic walking speeds of up to 1.2~m/s, respond to external disturbances of up to 60~N, and maintain balance on challenging terrains such as uneven surfaces, and outdoor environments.
♻ ☆ LLM-Driven Robots Risk Enacting Discrimination, Violence, and Unlawful Actions
Members of the Human-Robot Interaction (HRI) and Machine Learning (ML) communities have proposed Large Language Models (LLMs) as a promising resource for robotics tasks such as natural language interaction, household and workplace tasks, approximating 'common sense reasoning', and modeling humans. However, recent research has raised concerns about the potential for LLMs to produce discriminatory outcomes and unsafe behaviors in real-world robot experiments and applications. To assess whether such concerns are well placed in the context of HRI, we evaluate several highly-rated LLMs on discrimination and safety criteria. Our evaluation reveals that LLMs are currently unsafe for people across a diverse range of protected identity characteristics, including, but not limited to, race, gender, disability status, nationality, religion, and their intersections. Concretely, we show that LLMs produce directly discriminatory outcomes- e.g., 'gypsy' and 'mute' people are labeled untrustworthy, but not 'european' or 'able-bodied' people. We find various such examples of direct discrimination on HRI tasks such as facial expression, proxemics, security, rescue, and task assignment. Furthermore, we test models in settings with unconstrained natural language (open vocabulary) inputs, and find they fail to act safely, generating responses that accept dangerous, violent, or unlawful instructions-such as incident-causing misstatements, taking people's mobility aids, and sexual predation. Our results underscore the urgent need for systematic, routine, and comprehensive risk assessments and assurances to improve outcomes and ensure LLMs only operate on robots when it is safe, effective, and just to do so. We provide code to reproduce our experiments at https://github.com/rumaisa-azeem/llm-robots-discrimination-safety .
comment: Published in International Journal of Social Robotics (2025). 49 pages (65 with references and appendix), 27 Figures, 8 Tables. Andrew Hundt and Rumaisa Azeem are equal contribution co-first authors. The positions of the two co-first authors were swapped from arxiv version 1 with the written consent of all four authors. The Version of Record is available via DOI: 10.1007/s12369-025-01301-x
♻ ☆ Human2Robot: Learning Robot Actions from Paired Human-Robot Videos
Distilling knowledge from human demonstrations is a promising way for robots to learn and act. Existing methods, which often rely on coarsely-aligned video pairs, are typically constrained to learning global or task-level features. As a result, they tend to neglect the fine-grained frame-level dynamics required for complex manipulation and generalization to novel tasks. We posit that this limitation stems from a vicious circle of inadequate datasets and the methods they inspire. To break this cycle, we propose a paradigm shift that treats fine-grained human-robot alignment as a conditional video generation problem. To this end, we first introduce H&R, a novel third-person dataset containing 2,600 episodes of precisely synchronized human and robot motions, collected using a VR teleoperation system. We then present Human2Robot, a framework designed to leverage this data. Human2Robot employs a Video Prediction Model to learn a rich and implicit representation of robot dynamics by generating robot videos from human input, which in turn guides a decoupled action decoder. Our real-world experiments demonstrate that this approach not only achieves high performance on seen tasks but also exhibits significant one-shot generalization to novel positions, objects, instances, and even new task categories.
♻ ☆ Reward Redistribution via Gaussian Process Likelihood Estimation AAAI-26
In many practical reinforcement learning tasks, feedback is only provided at the end of a long horizon, leading to sparse and delayed rewards. Existing reward redistribution methods typically assume that per-step rewards are independent, thus overlooking interdependencies among state-action pairs. In this paper, we propose a Gaussian process based Likelihood Reward Redistribution (GP-LRR) framework that addresses this issue by modeling the reward function as a sample from a Gaussian process, which explicitly captures dependencies between state-action pairs through the kernel function. By maximizing the likelihood of the observed episodic return via a leave-one-out strategy that leverages the entire trajectory, our framework inherently introduces uncertainty regularization. Moreover, we show that conventional mean-squared-error (MSE) based reward redistribution arises as a special case of our GP-LRR framework when using a degenerate kernel without observation noise. When integrated with an off-policy algorithm such as Soft Actor-Critic, GP-LRR yields dense and informative reward signals, resulting in superior sample efficiency and policy performance on several MuJoCo benchmarks.
comment: Accepted by AAAI-26
Robotics 52
☆ Drone Swarm Energy Management
This note presents an analytical framework for decision-making in drone swarm systems operating under uncertainty, based on the integration of Partially Observable Markov Decision Processes (POMDP) with Deep Deterministic Policy Gradient (DDPG) reinforcement learning. The proposed approach enables adaptive control and cooperative behavior of unmanned aerial vehicles (UAVs) within a cognitive AI platform, where each agent learns optimal energy management and navigation policies from dynamic environmental states. We extend the standard DDPG architecture with a belief-state representation derived from Bayesian filtering, allowing for robust decision-making in partially observable environments. In this paper, for the Gaussian case, we numerically compare the performance of policies derived from DDPG to optimal policies for discretized versions of the original continuous problem. Simulation results demonstrate that the POMDP-DDPG-based swarm control model significantly improves mission success rates and energy efficiency compared to baseline methods. The developed framework supports distributed learning and decision coordination across multiple agents, providing a foundation for scalable cognitive swarm autonomy. The outcomes of this research contribute to the advancement of energy-aware control algorithms for intelligent multi-agent systems and can be applied in security, environmental monitoring, and infrastructure inspection scenarios.
comment: 14 pages, 4 Tables, 2 Figures
☆ Volumetric Ergodic Control
Ergodic control synthesizes optimal coverage behaviors over spatial distributions for nonlinear systems. However, existing formulations model the robot as a non-volumetric point, but in practice a robot interacts with the environment through its body and sensors with physical volume. In this work, we introduce a new ergodic control formulation that optimizes spatial coverage using a volumetric state representation. Our method preserves the asymptotic coverage guarantees of ergodic control, adds minimal computational overhead for real-time control, and supports arbitrary sample-based volumetric models. We evaluate our method across search and manipulation tasks -- with multiple robot dynamics and end-effector geometries or sensor models -- and show that it improves coverage efficiency by more than a factor of two while maintaining a 100% task completion rate across all experiments, outperforming the standard ergodic control method. Finally, we demonstrate the effectiveness of our method on a robot arm performing mechanical erasing tasks.
comment: 8 pages, 8 figures
☆ Terrain Costmap Generation via Scaled Preference Conditioning
Successful autonomous robot navigation in off-road domains requires the ability to generate high-quality terrain costmaps that are able to both generalize well over a wide variety of terrains and rapidly adapt relative costs at test time to meet mission-specific needs. Existing approaches for costmap generation allow for either rapid test-time adaptation of relative costs (e.g., semantic segmentation methods) or generalization to new terrain types (e.g., representation learning methods), but not both. In this work, we present scaled preference conditioned all-terrain costmap generation (SPACER), a novel approach for generating terrain costmaps that leverages synthetic data during training in order to generalize well to new terrains, and allows for rapid test-time adaptation of relative costs by conditioning on a user-specified scaled preference context. Using large-scale aerial maps, we provide empirical evidence that SPACER outperforms other approaches at generating costmaps for terrain navigation, with the lowest measured regret across varied preferences in five of seven environments for global path planning.
☆ Scalable Policy Evaluation with Video World Models
Training generalist policies for robotic manipulation has shown great promise, as they enable language-conditioned, multi-task behaviors across diverse scenarios. However, evaluating these policies remains difficult because real-world testing is expensive, time-consuming, and labor-intensive. It also requires frequent environment resets and carries safety risks when deploying unproven policies on physical robots. Manually creating and populating simulation environments with assets for robotic manipulation has not addressed these issues, primarily due to the significant engineering effort required and the often substantial sim-to-real gap, both in terms of physics and rendering. In this paper, we explore the use of action-conditional video generation models as a scalable way to learn world models for policy evaluation. We demonstrate how to incorporate action conditioning into existing pre-trained video generation models. This allows leveraging internet-scale in-the-wild online videos during the pre-training stage, and alleviates the need for a large dataset of paired video-action data, which is expensive to collect for robotic manipulation. Our paper examines the effect of dataset diversity, pre-trained weight and common failure cases for the proposed evaluation pipeline.Our experiments demonstrate that, across various metrics, including policy ranking and the correlation between actual policy values and predicted policy values, these models offer a promising approach for evaluating policies without requiring real-world interactions.
☆ Scalable Coverage Trajectory Synthesis on GPUs as Statistical Inference
Coverage motion planning is essential to a wide range of robotic tasks. Unlike conventional motion planning problems, which reason over temporal sequences of states, coverage motion planning requires reasoning over the spatial distribution of entire trajectories, making standard motion planning methods limited in computational efficiency and less amenable to modern parallelization frameworks. In this work, we formulate the coverage motion planning problem as a statistical inference problem from the perspective of flow matching, a generative modeling technique that has gained significant attention in recent years. The proposed formulation unifies commonly used statistical discrepancy measures, such as Kullback-Leibler divergence and Sinkhorn divergence, with a standard linear quadratic regulator problem. More importantly, it decouples the generation of trajectory gradients for coverage from the synthesis of control under nonlinear system dynamics, enabling significant acceleration through parallelization on modern computational architectures, particularly Graphics Processing Units (GPUs). This paper focuses on the advantages of this formulation in terms of scalability through parallelization, highlighting its computational benefits compared to conventional methods based on waypoint tracking.
comment: Presented at the "Workshop on Fast Motion Planning and Control in the Era of Parallelism" at Robotics: Science and Systems 2025. Workshop website: https://sites.google.com/rice.edu/parallelized-planning-control/
☆ Collaborative Representation Learning for Alignment of Tactile, Language, and Vision Modalities
Tactile sensing offers rich and complementary information to vision and language, enabling robots to perceive fine-grained object properties. However, existing tactile sensors lack standardization, leading to redundant features that hinder cross-sensor generalization. Moreover, existing methods fail to fully integrate the intermediate communication among tactile, language, and vision modalities. To address this, we propose TLV-CoRe, a CLIP-based Tactile-Language-Vision Collaborative Representation learning method. TLV-CoRe introduces a Sensor-Aware Modulator to unify tactile features across different sensors and employs tactile-irrelevant decoupled learning to disentangle irrelevant tactile features. Additionally, a Unified Bridging Adapter is introduced to enhance tri-modal interaction within the shared representation space. To fairly evaluate the effectiveness of tactile models, we further propose the RSS evaluation framework, focusing on Robustness, Synergy, and Stability across different methods. Experimental results demonstrate that TLV-CoRe significantly improves sensor-agnostic representation learning and cross-modal alignment, offering a new direction for multimodal tactile representation.
☆ A Comparative Evaluation of Prominent Methods in Autonomous Vehicle Certification
The "Vision Zero" policy, introduced by the Swedish Parliament in 1997, aims to eliminate fatalities and serious injuries resulting from traffic accidents. To achieve this goal, the use of self-driving vehicles in traffic is envisioned and a roadmap for the certification of self-driving vehicles is aimed to be determined. However, it is still unclear how the basic safety requirements that autonomous vehicles must meet will be verified and certified, and which methods will be used. This paper focuses on the comparative evaluation of the prominent methods planned to be used in the certification process of autonomous vehicles. It examines the prominent methods used in the certification process, develops a pipeline for the certification process of autonomous vehicles, and determines the stages, actors, and areas where the addressed methods can be applied.
☆ Rethinking Progression of Memory State in Robotic Manipulation: An Object-Centric Perspective AAAI 2026
As embodied agents operate in increasingly complex environments, the ability to perceive, track, and reason about individual object instances over time becomes essential, especially in tasks requiring sequenced interactions with visually similar objects. In these non-Markovian settings, key decision cues are often hidden in object-specific histories rather than the current scene. Without persistent memory of prior interactions (what has been interacted with, where it has been, or how it has changed) visuomotor policies may fail, repeat past actions, or overlook completed ones. To surface this challenge, we introduce LIBERO-Mem, a non-Markovian task suite for stress-testing robotic manipulation under object-level partial observability. It combines short- and long-horizon object tracking with temporally sequenced subgoals, requiring reasoning beyond the current frame. However, vision-language-action (VLA) models often struggle in such settings, with token scaling quickly becoming intractable even for tasks spanning just a few hundred frames. We propose Embodied-SlotSSM, a slot-centric VLA framework built for temporal scalability. It maintains spatio-temporally consistent slot identities and leverages them through two mechanisms: (1) slot-state-space modeling for reconstructing short-term history, and (2) a relational encoder to align the input tokens with action decoding. Together, these components enable temporally grounded, context-aware action prediction. Experiments show Embodied-SlotSSM's baseline performance on LIBERO-Mem and general tasks, offering a scalable solution for non-Markovian reasoning in object-centric robotic policies.
comment: Accepted at AAAI 2026
☆ SimTac: A Physics-Based Simulator for Vision-Based Tactile Sensing with Biomorphic Structures
Tactile sensing in biological organisms is deeply intertwined with morphological form, such as human fingers, cat paws, and elephant trunks, which enables rich and adaptive interactions through a variety of geometrically complex structures. In contrast, vision-based tactile sensors in robotics have been limited to simple planar geometries, with biomorphic designs remaining underexplored. To address this gap, we present SimTac, a physics-based simulation framework for the design and validation of biomorphic tactile sensors. SimTac consists of particle-based deformation modeling, light-field rendering for photorealistic tactile image generation, and a neural network for predicting mechanical responses, enabling accurate and efficient simulation across a wide range of geometries and materials. We demonstrate the versatility of SimTac by designing and validating physical sensor prototypes inspired by biological tactile structures and further demonstrate its effectiveness across multiple Sim2Real tactile tasks, including object classification, slip detection, and contact safety assessment. Our framework bridges the gap between bio-inspired design and practical realisation, expanding the design space of tactile sensors and paving the way for tactile sensing systems that integrate morphology and sensing to enable robust interaction in unstructured environments.
☆ RadAround: A Field-Expedient Direction Finder for Contested IoT Sensing & EM Situational Awareness
This paper presents RadAround, a passive 2-D direction-finding system designed for adversarial IoT sensing in contested environments. Using mechanically steered narrow-beam antennas and field-deployable SCADA software, it generates high-resolution electromagnetic (EM) heatmaps using low-cost COTS or 3D-printed components. The microcontroller-deployable SCADA coordinates antenna positioning and SDR sampling in real time for resilient, on-site operation. Its modular design enables rapid adaptation for applications such as EMC testing in disaster-response deployments, battlefield spectrum monitoring, electronic intrusion detection, and tactical EM situational awareness (EMSA). Experiments show RadAround detecting computing machinery through walls, assessing utilization, and pinpointing EM interference (EMI) leakage sources from Faraday enclosures.
comment: 6 pages. Cite as O. Maute, B. A. Roberts, and B. Peköz, "RadAround: A field-expedient direction finder for contested IoT sensing & EM situational awareness," in Proc. 2025 IEEE Military Commun. Conf. (MILCOM), Los Angeles, USA, Oct. 2025, pp. 1-6
☆ Simulating an Autonomous System in CARLA using ROS 2
Autonomous racing offers a rigorous setting to stress test perception, planning, and control under high speed and uncertainty. This paper proposes an approach to design and evaluate a software stack for an autonomous race car in CARLA: Car Learning to Act simulator, targeting competitive driving performance in the Formula Student UK Driverless (FS-AI) 2025 competition. By utilizing a 360° light detection and ranging (LiDAR), stereo camera, global navigation satellite system (GNSS), and inertial measurement unit (IMU) sensor via ROS 2 (Robot Operating System), the system reliably detects the cones marking the track boundaries at distances of up to 35 m. Optimized trajectories are computed considering vehicle dynamics and simulated environmental factors such as visibility and lighting to navigate the track efficiently. The complete autonomous stack is implemented in ROS 2 and validated extensively in CARLA on a dedicated vehicle (ADS-DV) before being ported to the actual hardware, which includes the Jetson AGX Orin 64GB, ZED2i Stereo Camera, Robosense Helios 16P LiDAR, and CHCNAV Inertial Navigation System (INS).
☆ 6D Strawberry Pose Estimation: Real-time and Edge AI Solutions Using Purely Synthetic Training Data
Automated and selective harvesting of fruits has become an important area of research, particularly due to challenges such as high costs and a shortage of seasonal labor in advanced economies. This paper focuses on 6D pose estimation of strawberries using purely synthetic data generated through a procedural pipeline for photorealistic rendering. We employ the YOLOX-6D-Pose algorithm, a single-shot approach that leverages the YOLOX backbone, known for its balance between speed and accuracy, and its support for edge inference. To address the lacking availability of training data, we introduce a robust and flexible pipeline for generating synthetic strawberry data from various 3D models via a procedural Blender pipeline, where we focus on enhancing the realism of the synthesized data in comparison to previous work to make it a valuable resource for training pose estimation algorithms. Quantitative evaluations indicate that our models achieve comparable accuracy on both the NVIDIA RTX 3090 and Jetson Orin Nano across several ADD-S metrics, with the RTX 3090 demonstrating superior processing speed. However, the Jetson Orin Nano is particularly suited for resource-constrained environments, making it an excellent choice for deployment in agricultural robotics. Qualitative assessments further confirm the model's performance, demonstrating its capability to accurately infer the poses of ripe and partially ripe strawberries, while facing challenges in detecting unripe specimens. This suggests opportunities for future improvements, especially in enhancing detection capabilities for unripe strawberries (if desired) by exploring variations in color. Furthermore, the methodology presented could be adapted easily for other fruits such as apples, peaches, and plums, thereby expanding its applicability and impact in the field of agricultural automation.
☆ Experiences from Benchmarking Vision-Language-Action Models for Robotic Manipulation
Foundation models applied in robotics, particularly \textbf{Vision--Language--Action (VLA)} models, hold great promise for achieving general-purpose manipulation. Yet, systematic real-world evaluations and cross-model comparisons remain scarce. This paper reports our \textbf{empirical experiences} from benchmarking four representative VLAs -- \textbf{ACT}, \textbf{OpenVLA--OFT}, \textbf{RDT-1B}, and \boldmath{$π_0$} -- across four manipulation tasks conducted in both simulation and on the \textbf{ALOHA Mobile} platform. We establish a \textbf{standardized evaluation framework} that measures performance along three key dimensions: (1) \textit{accuracy and efficiency} (success rate and time-to-success), (2) \textit{adaptability} across in-distribution, spatial out-of-distribution, and instance-plus-spatial out-of-distribution settings, and (3) \textit{language instruction-following accuracy}. Through this process, we observe that \boldmath{$π_0$} demonstrates superior adaptability in out-of-distribution scenarios, while \textbf{ACT} provides the highest stability in-distribution. Further analysis highlights differences in computational demands, data-scaling behavior, and recurring failure modes such as near-miss grasps, premature releases, and long-horizon state drift. These findings reveal practical trade-offs among VLA model architectures in balancing precision, generalization, and deployment cost, offering actionable insights for selecting and deploying VLAs in real-world robotic manipulation tasks.
☆ Sashimi-Bot: Autonomous Tri-manual Advanced Manipulation and Cutting of Deformable Objects
Advanced robotic manipulation of deformable, volumetric objects remains one of the greatest challenges due to their pliancy, frailness, variability, and uncertainties during interaction. Motivated by these challenges, this article introduces Sashimi-Bot, an autonomous multi-robotic system for advanced manipulation and cutting, specifically the preparation of sashimi. The objects that we manipulate, salmon loins, are natural in origin and vary in size and shape, they are limp and deformable with poorly characterized elastoplastic parameters, while also being slippery and hard to hold. The three robots straighten the loin; grasp and hold the knife; cut with the knife in a slicing motion while cooperatively stabilizing the loin during cutting; and pick up the thin slices from the cutting board or knife blade. Our system combines deep reinforcement learning with in-hand tool shape manipulation, in-hand tool cutting, and feedback of visual and tactile information to achieve robustness to the variabilities inherent in this task. This work represents a milestone in robotic manipulation of deformable, volumetric objects that may inspire and enable a wide range of other real-world applications.
☆ Humanoid Whole-Body Badminton via Multi-Stage Reinforcement Learning
Humanoid robots have demonstrated strong capability for interacting with deterministic scenes across locomotion, manipulation, and more challenging loco-manipulation tasks. Yet the real world is dynamic, quasi-static interactions are insufficient to cope with the various environmental conditions. As a step toward more dynamic interaction scenario, we present a reinforcement-learning-based training pipeline that produces a unified whole-body controller for humanoid badminton, enabling coordinated lower-body footwork and upper-body striking without any motion priors or expert demonstrations. Training follows a three-stage curriculum: first footwork acquisition, then precision-guided racket swing generation, and finally task-focused refinement, yielding motions in which both legs and arms serve the hitting objective. For deployment, we incorporate an Extended Kalman Filter (EKF) to estimate and predict shuttlecock trajectories for target striking. We also introduce a prediction-free variant that dispenses with EKF and explicit trajectory prediction. To validate the framework, we conduct five sets of experiment in both simulation and the real world. In simulation, two robots sustain a rally of 21 consecutive hits. Moreover, the prediction-free variant achieves successful hits with comparable performance relative to the target-known policy. In real-world tests, both the prediction and controller module exhibit high accuracy, and on-court hitting achieves an outgoing shuttle speed up to 10 m/s with a mean return landing distance of 3.5 m. These experiment results show that our humanoid robot can deliver highly dynamic while precise goal striking in badminton, and can be adapted to more dynamism critical domains.
☆ Phys-Liquid: A Physics-Informed Dataset for Estimating 3D Geometry and Volume of Transparent Deformable Liquids AAAI-26
Estimating the geometric and volumetric properties of transparent deformable liquids is challenging due to optical complexities and dynamic surface deformations induced by container movements. Autonomous robots performing precise liquid manipulation tasks, such as dispensing, aspiration, and mixing, must handle containers in ways that inevitably induce these deformations, complicating accurate liquid state assessment. Current datasets lack comprehensive physics-informed simulation data representing realistic liquid behaviors under diverse dynamic scenarios. To bridge this gap, we introduce Phys-Liquid, a physics-informed dataset comprising 97,200 simulation images and corresponding 3D meshes, capturing liquid dynamics across multiple laboratory scenes, lighting conditions, liquid colors, and container rotations. To validate the realism and effectiveness of Phys-Liquid, we propose a four-stage reconstruction and estimation pipeline involving liquid segmentation, multi-view mask generation, 3D mesh reconstruction, and real-world scaling. Experimental results demonstrate improved accuracy and consistency in reconstructing liquid geometry and volume, outperforming existing benchmarks. The dataset and associated validation methods facilitate future advancements in transparent liquid perception tasks. The dataset and code are available at https://dualtransparency.github.io/Phys-Liquid/.
comment: 14 pages, 19 figures. Accepted as an oral paper at AAAI-26 (Main Technical Track). Code and dataset: https://github.com/dualtransparency/Phys-Liquid-AAAI Project page: https://dualtransparency.github.io/Phys-Liquid/
☆ AdaptPNP: Integrating Prehensile and Non-Prehensile Skills for Adaptive Robotic Manipulation
Non-prehensile (NP) manipulation, in which robots alter object states without forming stable grasps (for example, pushing, poking, or sliding), significantly broadens robotic manipulation capabilities when grasping is infeasible or insufficient. However, enabling a unified framework that generalizes across different tasks, objects, and environments while seamlessly integrating non-prehensile and prehensile (P) actions remains challenging: robots must determine when to invoke NP skills, select the appropriate primitive for each context, and compose P and NP strategies into robust, multi-step plans. We introduce ApaptPNP, a vision-language model (VLM)-empowered task and motion planning framework that systematically selects and combines P and NP skills to accomplish diverse manipulation objectives. Our approach leverages a VLM to interpret visual scene observations and textual task descriptions, generating a high-level plan skeleton that prescribes the sequence and coordination of P and NP actions. A digital-twin based object-centric intermediate layer predicts desired object poses, enabling proactive mental rehearsal of manipulation sequences. Finally, a control module synthesizes low-level robot commands, with continuous execution feedback enabling online task plan refinement and adaptive replanning through the VLM. We evaluate ApaptPNP across representative P&NP hybrid manipulation tasks in both simulation and real-world environments. These results underscore the potential of hybrid P&NP manipulation as a crucial step toward general-purpose, human-level robotic manipulation capabilities. Project Website: https://sites.google.com/view/adaptpnp/home
☆ Autonomous Vehicle Path Planning by Searching With Differentiable Simulation
Planning allows an agent to safely refine its actions before executing them in the real world. In autonomous driving, this is crucial to avoid collisions and navigate in complex, dense traffic scenarios. One way to plan is to search for the best action sequence. However, this is challenging when all necessary components - policy, next-state predictor, and critic - have to be learned. Here we propose Differentiable Simulation for Search (DSS), a framework that leverages the differentiable simulator Waymax as both a next state predictor and a critic. It relies on the simulator's hardcoded dynamics, making state predictions highly accurate, while utilizing the simulator's differentiability to effectively search across action sequences. Our DSS agent optimizes its actions using gradient descent over imagined future trajectories. We show experimentally that DSS - the combination of planning gradients and stochastic search - significantly improves tracking and path planning accuracy compared to sequence prediction, imitation learning, model-free RL, and other planning methods.
☆ Miniature Testbed for Validating Multi-Agent Cooperative Autonomous Driving
Cooperative autonomous driving, which extends vehicle autonomy by enabling real-time collaboration between vehicles and smart roadside infrastructure, remains a challenging yet essential problem. However, none of the existing testbeds employ smart infrastructure equipped with sensing, edge computing, and communication capabilities. To address this gap, we design and implement a 1:15-scale miniature testbed, CIVAT, for validating cooperative autonomous driving, consisting of a scaled urban map, autonomous vehicles with onboard sensors, and smart infrastructure. The proposed testbed integrates V2V and V2I communication with the publish-subscribe pattern through a shared Wi-Fi and ROS2 framework, enabling information exchange between vehicles and infrastructure to realize cooperative driving functionality. As a case study, we validate the system through infrastructure-based perception and intersection management experiments.
comment: 8 pages
☆ Latent-Space Autoregressive World Model for Efficient and Robust Image-Goal Navigation
Traditional navigation methods rely heavily on accurate localization and mapping. In contrast, world models that capture environmental dynamics in latent space have opened up new perspectives for navigation tasks, enabling systems to move beyond traditional multi-module pipelines. However, world model often suffers from high computational costs in both training and inference. To address this, we propose LS-NWM - a lightweight latent space navigation world model that is trained and operates entirely in latent space, compared to the state-of-the-art baseline, our method reduces training time by approximately 3.2x and planning time by about 447x,while further improving navigation performance with a 35% higher SR and an 11% higher SPL. The key idea is that accurate pixel-wise environmental prediction is unnecessary for navigation. Instead, the model predicts future latent states based on current observational features and action inputs, then performs path planning and decision-making within this compact representation, significantly improving computational efficiency. By incorporating an autoregressive multi-frame prediction strategy during training, the model effectively captures long-term spatiotemporal dependencies, thereby enhancing navigation performance in complex scenarios. Experimental results demonstrate that our method achieves state-of-the-art navigation performance while maintaining a substantial efficiency advantage over existing approaches.
☆ Dynamic Reconfiguration of Robotic Swarms: Coordination and Control for Precise Shape Formation
Coordination of movement and configuration in robotic swarms is a challenging endeavor. Deciding when and where each individual robot must move is a computationally complex problem. The challenge is further exacerbated by difficulties inherent to physical systems, such as measurement error and control dynamics. Thus, how to best determine the optimal path for each robot, when moving from one configuration to another, and how to best perform such determination and effect corresponding motion remains an open problem. In this paper, we show an algorithm for such coordination of robotic swarms. Our methods allow seamless transition from one configuration to another, leveraging geometric formulations that are mapped to the physical domain through appropriate control, localization, and mapping techniques. This paves the way for novel applications of robotic swarms by enabling more sophisticated distributed behaviors.
comment: accepted at the 9th International Conference on Algorithms, Computing and Systems (ICACS 2025)
☆ Dexterous Manipulation Transfer via Progressive Kinematic-Dynamic Alignment AAAI 2026
The inherent difficulty and limited scalability of collecting manipulation data using multi-fingered robot hand hardware platforms have resulted in severe data scarcity, impeding research on data-driven dexterous manipulation policy learning. To address this challenge, we present a hand-agnostic manipulation transfer system. It efficiently converts human hand manipulation sequences from demonstration videos into high-quality dexterous manipulation trajectories without requirements of massive training data. To tackle the multi-dimensional disparities between human hands and dexterous hands, as well as the challenges posed by high-degree-of-freedom coordinated control of dexterous hands, we design a progressive transfer framework: first, we establish primary control signals for dexterous hands based on kinematic matching; subsequently, we train residual policies with action space rescaling and thumb-guided initialization to dynamically optimize contact interactions under unified rewards; finally, we compute wrist control trajectories with the objective of preserving operational semantics. Using only human hand manipulation videos, our system automatically configures system parameters for different tasks, balancing kinematic matching and dynamic optimization across dexterous hands, object categories, and tasks. Extensive experimental results demonstrate that our framework can automatically generate smooth and semantically correct dexterous hand manipulation that faithfully reproduces human intentions, achieving high efficiency and strong generalizability with an average transfer success rate of 73%, providing an easily implementable and scalable method for collecting robot dexterous manipulation data.
comment: 13 pages, 15 figures. Accepted by AAAI 2026
☆ Terradynamics and design of tip-extending robotic anchors
Most engineered pilings require substantially more force to be driven into the ground than they can resist during extraction. This requires relatively heavy equipment for insertion, which is problematic for anchoring in hard-to-access sites, including in extraterrestrial locations. In contrast, for tree roots, the external reaction force required to extract is much greater than required to insert--little more than the weight of the seed initiates insertion. This is partly due to the mechanism by which roots insert into the ground: tip extension. Proof-of-concept robotic prototypes have shown the benefits of using this mechanism, but a rigorous understanding of the underlying granular mechanics and how they inform the design of a robotic anchor is lacking. Here, we study the terradynamics of tip-extending anchors compared to traditional piling-like intruders, develop a set of design insights, and apply these to create a deployable robotic anchor. Specifically, we identify that to increase an anchor's ratio of extraction force to insertion force, it should: (i) extend beyond a critical depth; (ii) include hair-like protrusions; (iii) extend near-vertically, and (iv) incorporate multiple smaller anchors rather than a single large anchor. Synthesizing these insights, we developed a lightweight, soft robotic, root-inspired anchoring device that inserts into the ground with a reaction force less than its weight. We demonstrate that the 300 g device can deploy a series of temperature sensors 45 cm deep into loose Martian regolith simulant while anchoring with an average of 120 N, resulting in an anchoring-to-weight ratio of 40:1.
☆ Collaborative Multi-Robot Non-Prehensile Manipulation via Flow-Matching Co-Generation
Coordinating a team of robots to reposition multiple objects in cluttered environments requires reasoning jointly about where robots should establish contact, how to manipulate objects once contact is made, and how to navigate safely and efficiently at scale. Prior approaches typically fall into two extremes -- either learning the entire task or relying on privileged information and hand-designed planners -- both of which struggle to handle diverse objects in long-horizon tasks. To address these challenges, we present a unified framework for collaborative multi-robot, multi-object non-prehensile manipulation that integrates flow-matching co-generation with anonymous multi-robot motion planning. Within this framework, a generative model co-generates contact formations and manipulation trajectories from visual observations, while a novel motion planner conveys robots at scale. Crucially, the same planner also supports coordination at the object level, assigning manipulated objects to larger target structures and thereby unifying robot- and object-level reasoning within a single algorithmic framework. Experiments in challenging simulated environments demonstrate that our approach outperforms baselines in both motion planning and manipulation tasks, highlighting the benefits of generative co-design and integrated planning for scaling collaborative manipulation to complex multi-agent, multi-object settings. Visit gco-paper.github.io for code and demonstrations.
☆ WetExplorer: Automating Wetland Greenhouse-Gas Surveys with an Autonomous Mobile Robot
Quantifying greenhouse-gases (GHG) in wetlands is critical for climate modeling and restoration assessment, yet manual sampling is labor-intensive, and time demanding. We present WetExplorer, an autonomous tracked robot that automates the full GHG-sampling workflow. The robot system integrates low-ground-pressure locomotion, centimeter-accurate lift placement, dual-RTK sensor fusion, obstacle avoidance planning, and deep-learning perception in a containerized ROS2 stack. Outdoor trials verified that the sensor-fusion stack maintains a mean localization error of 1.71 cm, the vision module estimates object pose with 7 mm translational and 3° rotational accuracy, while indoor trials demonstrated that the full motion-planning pipeline positions the sampling chamber within a global tolerance of 70 mm while avoiding obstacles, all without human intervention. By eliminating the manual bottleneck, WetExplorer enables high-frequency, multi-site GHG measurements and opens the door for dense, long-duration datasets in saturated wetland terrain.
comment: To be published in 2025 IEEE International Conference on Robotics and Biomimetics
☆ MATT-Diff: Multimodal Active Target Tracking by Diffusion Policy
This paper proposes MATT-Diff: Multi-Modal Active Target Tracking by Diffusion Policy, a control policy that captures multiple behavioral modes - exploration, dedicated tracking, and target reacquisition - for active multi-target tracking. The policy enables agent control without prior knowledge of target numbers, states, or dynamics. Effective target tracking demands balancing exploration for undetected or lost targets with following the motion of detected but uncertain ones. We generate a demonstration dataset from three expert planners including frontier-based exploration, an uncertainty-based hybrid planner switching between frontier-based exploration and RRT* tracking based on target uncertainty, and a time-based hybrid planner switching between exploration and tracking based on target detection time. We design a control policy utilizing a vision transformer for egocentric map tokenization and an attention mechanism to integrate variable target estimates represented by Gaussian densities. Trained as a diffusion model, the policy learns to generate multi-modal action sequences through a denoising process. Evaluations demonstrate MATT-Diff's superior tracking performance against expert and behavior cloning baselines across multiple target motions, empirically validating its advantages in target tracking.
comment: 14 pages, 3 figures. Submitted to L4DC 2026
☆ Autonomous Underwater Cognitive System for Adaptive Navigation: A SLAM-Integrated Cognitive Architecture
Deep-sea exploration poses significant challenges, including disorientation, communication loss, and navigational failures in dynamic underwater environments. This paper presents an Autonomous Underwater Cognitive System (AUCS) that integrates Simultaneous Localization and Mapping (SLAM) with a Soar-based cognitive architecture to enable adaptive navigation in complex oceanic conditions. The system fuses multi-sensor data from SONAR, LiDAR, IMU, and DVL with cognitive reasoning modules for perception, attention, planning, and learning. Unlike conventional SLAM systems, AUCS incorporates semantic understanding, adaptive sensor management, and memory-based learning to differentiate between dynamic and static objects, reducing false loop closures and enhancing long-term map consistency. The proposed architecture demonstrates a complete perception-cognition-action-learning loop, allowing autonomous underwater vehicles to sense, reason, and adapt intelligently. This work lays a foundation for next-generation cognitive submersible systems, improving safety, reliability, and autonomy in deep-sea exploration.
comment: 6 pages, 2 figures
☆ LAVQA: A Latency-Aware Visual Question Answering Framework for Shared Autonomy in Self-Driving Vehicles
When uncertainty is high, self-driving vehicles may halt for safety and benefit from the access to remote human operators who can provide high-level guidance. This paradigm, known as {shared autonomy}, enables autonomous vehicle and remote human operators to jointly formulate appropriate responses. To address critical decision timing with variable latency due to wireless network delays and human response time, we present LAVQA, a latency-aware shared autonomy framework that integrates Visual Question Answering (VQA) and spatiotemporal risk visualization. LAVQA augments visual queries with Latency-Induced COllision Map (LICOM), a dynamically evolving map that represents both temporal latency and spatial uncertainty. It enables remote operator to observe as the vehicle safety regions vary over time in the presence of dynamic obstacles and delayed responses. Closed-loop simulations in CARLA, the de-facto standard for autonomous vehicle simulator, suggest that that LAVQA can reduce collision rates by over 8x compared to latency-agnostic baselines.
☆ Large Language Models and 3D Vision for Intelligent Robotic Perception and Autonomy: A Review
With the rapid advancement of artificial intelligence and robotics, the integration of Large Language Models (LLMs) with 3D vision is emerging as a transformative approach to enhancing robotic sensing technologies. This convergence enables machines to perceive, reason and interact with complex environments through natural language and spatial understanding, bridging the gap between linguistic intelligence and spatial perception. This review provides a comprehensive analysis of state-of-the-art methodologies, applications and challenges at the intersection of LLMs and 3D vision, with a focus on next-generation robotic sensing technologies. We first introduce the foundational principles of LLMs and 3D data representations, followed by an in-depth examination of 3D sensing technologies critical for robotics. The review then explores key advancements in scene understanding, text-to-3D generation, object grounding and embodied agents, highlighting cutting-edge techniques such as zero-shot 3D segmentation, dynamic scene synthesis and language-guided manipulation. Furthermore, we discuss multimodal LLMs that integrate 3D data with touch, auditory and thermal inputs, enhancing environmental comprehension and robotic decision-making. To support future research, we catalog benchmark datasets and evaluation metrics tailored for 3D-language and vision tasks. Finally, we identify key challenges and future research directions, including adaptive model architectures, enhanced cross-modal alignment and real-time processing capabilities, which pave the way for more intelligent, context-aware and autonomous robotic sensing systems.
comment: 45 pages, 15 figures, MDPI Sensors Journal
♻ ☆ EAST: Environment Aware Safe Tracking using Planning and Control Co-Design
This paper considers the problem of autonomous mobile robot navigation in unknown environments with moving obstacles. We propose a new method to achieve environment-aware safe tracking (EAST) of robot motion plans that integrates an obstacle clearance cost for path planning, a convex reachable set for robot motion prediction, and safety constraints for dynamic obstacle avoidance. EAST adapts the motion of the robot according to the locally sensed environment geometry and dynamics, leading to fast motion in wide open areas and cautious behavior in narrow passages or near moving obstacles. Our control design uses a reference governor, a virtual dynamical system that guides the robot's motion and decouples the path tracking and safety objectives. While reference governor methods have been used for safe tracking control in static environments, our key contribution is an extension to dynamic environments using convex optimization with control barrier function (CBF) constraints. Thus, our work establishes a connection between reference governor techniques and CBF techniques for safe control in dynamic environments. We validate our approach in simulated and real-world environments, featuring complex obstacle configurations and natural dynamic obstacle motion.
♻ ☆ Sensory-Motor Control with Large Language Models via Iterative Policy Refinement
We propose a method that enables large language models (LLMs) to control embodied agents through the generation of control policies that directly map continuous observation vectors to continuous action vectors. At the outset, the LLMs generate a control strategy based on a textual description of the agent, its environment, and the intended goal. This strategy is then iteratively refined through a learning process in which the LLMs are repeatedly prompted to improve the current strategy, using performance feedback and sensory-motor data collected during its evaluation. The method is validated on classic control tasks from the Gymnasium library and the inverted pendulum task from the MuJoCo library. The approach proves effective with relatively compact models such as GPT-oss:120b and Qwen2.5:72b. In most cases, it successfully identifies optimal or near-optimal solutions by integrating symbolic knowledge derived through reasoning with sub-symbolic sensory-motor data gathered as the agent interacts with its environment.
comment: Article updated with results from gpt-oss:120b and gpt-oss:20b. 27 pages (13 pages are from appendix), 8 figures, 2 tables, code for experiments replication and supplementary material provided at https://github.com/jtyska/llm-robotics-article/
♻ ☆ DiAReL: Reinforcement Learning with Disturbance Awareness for Robust Sim2Real Policy Transfer in Robot Control
Delayed Markov decision processes (DMDPs) fulfill the Markov property by augmenting the state space of agents with a finite time window of recently committed actions. In reliance on these state augmentations, delay-resolved reinforcement learning algorithms train policies to learn optimal interactions with environments featuring observation or action delays. Although such methods can be directly trained on the real robots, due to sample inefficiency, limited resources, or safety constraints, a common approach is to transfer models trained in simulation to the physical robot. However, robotic simulations rely on approximated models of the physical systems, which hinders the sim2real transfer. In this work, we consider various uncertainties in modeling the robot or environment dynamics as unknown intrinsic disturbances applied to the system input. We introduce the disturbance-augmented Markov decision process (DAMDP) in delayed settings as a novel representation to incorporate disturbance estimation in training on-policy reinforcement learning algorithms. The proposed method is validated across several metrics on learning robotic reaching and pushing tasks and compared with disturbance-unaware baselines. The results show that the disturbance-augmented models can achieve higher stabilization and robustness in the control response, which in turn improves the prospects of successful sim2real transfer.
comment: Accepted for publication in IEEE Transactions on Control Systems Technology (TCST)
♻ ☆ Dynamic Sparsity: Challenging Common Sparsity Assumptions for Learning World Models in Robotic Reinforcement Learning Benchmarks
The use of learned dynamics models, also known as world models, can improve the sample efficiency of reinforcement learning. Recent work suggests that the underlying causal graphs of such dynamics models are sparsely connected, with each of the future state variables depending only on a small subset of the current state variables, and that learning may therefore benefit from sparsity priors. Similarly, temporal sparsity, i.e. sparsely and abruptly changing local dynamics, has also been proposed as a useful inductive bias. In this work, we critically examine these assumptions by analyzing ground-truth dynamics from a set of robotic reinforcement learning environments in the MuJoCo Playground benchmark suite, aiming to determine whether the proposed notions of state and temporal sparsity actually tend to hold in typical reinforcement learning tasks. We study (i) whether the causal graphs of environment dynamics are sparse, (ii) whether such sparsity is state-dependent, and (iii) whether local system dynamics change sparsely. Our results indicate that global sparsity is rare, but instead the tasks show local, state-dependent sparsity in their dynamics and this sparsity exhibits distinct structures, appearing in temporally localized clusters (e.g., during contact events) and affecting specific subsets of state dimensions. These findings challenge common sparsity prior assumptions in dynamics learning, emphasizing the need for grounded inductive biases that reflect the state-dependent sparsity structure of real-world dynamics.
♻ ☆ Reconfigurable hydrostatics: Toward versatile and efficient load-bearing robotics
Wearable and legged robot designers face multiple challenges when choosing actuation. Traditional fully actuated designs using electric motors are multifunctional but oversized and inefficient for bearing conservative loads and for being backdrivable. Alternatively, quasi-passive and underactuated designs reduce the amount of motorization and energy storage, but are often designed for specific tasks. Designers of versatile and stronger wearable robots will face these challenges unless future actuators become very torque-dense, backdrivable and efficient This paper explores a design paradigm for addressing this issue: reconfigurable hydrostatics. We show that a hydrostatic actuator can integrate a passive force mechanism and a sharing mechanism in the fluid domain and still be multifunctional. First, an analytical study compares the effect of these two mechanisms on the motorization requirements in the context of a load-bearing exoskeleton. Then, the hydrostatic concept integrating these two mechanisms using hydraulic components is presented. A case study analysis shows the mass/efficiency/inertia benefits of the concept over a fully actuated one. Then, experiments are conducted on robotic legs to demonstrate that the actuator concept can meet the expected performance in terms of force tracking, versatility, and efficiency under controlled conditions. The proof-of-concept can track the vertical ground reaction force (GRF) profiles of walking, running, squatting, and jumping, and the energy consumption is 4.8x lower for walking. The transient force behaviors due to switching from one leg to the other are also analyzed along with some mitigation to improve them.
♻ ☆ Enhancing the NAO: Extending Capabilities of Legacy Robots for Long-Term Research
Legacy (unsupported) robotic platforms often lose research utility when manufacturer support ends, preventing integration of modern sensing, speech, and interaction capabilities. We present the Enhanced NAO, a revitalized version of Aldebaran's NAO robot featuring upgraded beamforming microphones, RGB-D and thermal cameras, and additional compute resources in a fully self-contained package. This system combines cloud-based and local models for perception and dialogue, while preserving the NAO's expressive body and behaviors. In a pilot user study validating conversational performance, the Enhanced NAO delivered significantly higher conversational quality and elicited stronger user preference compared to the NAO AI Edition, without increasing response latency. The added visual and thermal sensing modalities established a foundation for future perception-driven interaction. Beyond this implementation, our framework provides a platform-agnostic strategy for extending the lifespan and research utility of legacy robots, ensuring they remain valuable tools for human-robot interaction.
♻ ☆ Large Language Model-assisted Autonomous Vehicle Recovery from Immobilization
Despite significant advancements in recent decades, autonomous vehicles (AVs) continue to face challenges in navigating certain traffic scenarios where human drivers excel. In such situations, AVs often become immobilized, disrupting overall traffic flow. Current recovery solutions, such as remote intervention (which is costly and inefficient) and manual takeover (which excludes non-drivers and limits AV accessibility), are inadequate. This paper introduces StuckSolver, a novel Large Language Model (LLM) driven recovery framework that enables AVs to resolve immobilization scenarios through self-reasoning and/or passenger-guided decision-making. StuckSolver is designed as a plug-in add-on module that operates on top of the AV's existing perception-planning-control stack, requiring no modification to its internal architecture. Instead, it interfaces with standard sensor data streams to detect immobilization states, interpret environmental context, and generate high-level recovery commands that can be executed by the AV's native planner. We evaluate StuckSolver on the Bench2Drive benchmark and in custom-designed uncertainty scenarios. Results show that StuckSolver achieves near-state-of-the-art performance through autonomous self-reasoning alone and exhibits further improvements when passenger guidance is incorporated.
comment: 7 pages
♻ ☆ A Learning-Based Framework for Collision-Free Motion Planning
This paper presents a learning-based extension to a Circular Field (CF)-based motion planner for efficient, collision-free trajectory generation in cluttered environments. The proposed approach overcomes the limitations of hand-tuned force field parameters by employing a deep neural network trained to infer optimal planner gains from a single depth image of the scene. The pipeline incorporates a CUDA-accelerated perception module, a predictive agent-based planning strategy, and a dataset generated through Bayesian optimization in simulation. The resulting framework enables real-time planning without manual parameter tuning and is validated both in simulation and on a Franka Emika Panda robot. Experimental results demonstrate successful task completion and improved generalization compared to classical planners.
♻ ☆ Pelican-VL 1.0: A Foundation Brain Model for Embodied Intelligence
This report presents Pelican-VL 1.0, a new family of open-source embodied brain models with parameter scales ranging from 7 billion to 72 billion. Our explicit mission is clearly stated as: To embed powerful intelligence into various embodiments. Pelican-VL 1.0 is currently the largest-scale open-source embodied multimodal brain model. Its core advantage lies in the in-depth integration of data power and intelligent adaptive learning mechanisms. Specifically, metaloop distilled a high-quality dataset from a raw dataset containing 4+ billion tokens. Pelican-VL 1.0 is trained on a large-scale cluster of 1000+ A800 GPUs, consuming over 50k+ A800 GPU-hours per checkpoint. This translates to a 20.3% performance uplift from its base model and outperforms 100B-level open-source counterparts by 10.6%, placing it on par with leading proprietary systems on well-known embodied benchmarks. We establish a novel framework, DPPO (Deliberate Practice Policy Optimization), inspired by human metacognition to train Pelican-VL 1.0. We operationalize this as a metaloop that teaches the AI to practice deliberately, which is a RL-Refine-Diagnose-SFT loop.
♻ ☆ Leveraging Sidewalk Robots for Walkability-Related Analyses
Walkability is a key component of sustainable urban development. In walkability studies, collecting detailed pedestrian infrastructure data remains challenging due to the high costs and limited scalability of traditional methods. Sidewalk delivery robots, increasingly deployed in urban environments, offer a promising solution to these limitations. This paper explores how these robots can serve as mobile data collection platforms, capturing sidewalk-level features related to walkability in a scalable, automated, and real-time manner. A sensor-equipped robot was deployed on a sidewalk network at KTH in Stockholm, completing 101 trips covering 900 segment records. From the collected data, different typologies of features are derived, including robot trip characteristics (e.g., speed, duration), sidewalk conditions (e.g., width, surface unevenness), and sidewalk utilization (e.g., pedestrian density). Their walkability-related implications were investigated with a series of analyses. The results demonstrate that pedestrian movement patterns are strongly influenced by sidewalk characteristics, with higher density, reduced width, and surface irregularity associated with slower and more variable trajectories. Notably, robot speed closely mirrors pedestrian behavior, highlighting its potential as a proxy for assessing pedestrian dynamics. The proposed framework enables continuous monitoring of sidewalk conditions and pedestrian behavior, contributing to the development of more walkable, inclusive, and responsive urban environments.
♻ ☆ TTF-VLA: Temporal Token Fusion via Pixel-Attention Integration for Vision-Language-Action Models AAAI 2026
Vision-Language-Action (VLA) models process visual inputs independently at each timestep, discarding valuable temporal information inherent in robotic manipulation tasks. This frame-by-frame processing makes models vulnerable to visual noise while ignoring the substantial coherence between consecutive frames in manipulation sequences. We propose Temporal Token Fusion (TTF), a training-free approach that intelligently integrates historical and current visual representations to enhance VLA inference quality. Our method employs dual-dimension detection combining efficient grayscale pixel difference analysis with attention-based semantic relevance assessment, enabling selective temporal token fusion through hard fusion strategies and keyframe anchoring to prevent error accumulation. Comprehensive experiments across LIBERO, SimplerEnv, and real robot tasks demonstrate consistent improvements: 4.0 percentage points average on LIBERO (72.4\% vs 68.4\% baseline), cross-environment validation on SimplerEnv (4.8\% relative improvement), and 8.7\% relative improvement on real robot tasks. Our approach proves model-agnostic, working across OpenVLA and VLA-Cache architectures. Notably, TTF reveals that selective Query matrix reuse in attention mechanisms enhances rather than compromises performance, suggesting promising directions for direct KQV matrix reuse strategies that achieve computational acceleration while improving task success rates.
comment: Accepted to AAAI 2026. Camera-ready version
♻ ☆ MSGNav: Unleashing the Power of Multi-modal 3D Scene Graph for Zero-Shot Embodied Navigation
Embodied navigation is a fundamental capability for robotic agents operating. Real-world deployment requires open vocabulary generalization and low training overhead, motivating zero-shot methods rather than task-specific RL training. However, existing zero-shot methods that build explicit 3D scene graphs often compress rich visual observations into text-only relations, leading to high construction cost, irreversible loss of visual evidence, and constrained vocabularies. To address these limitations, we introduce the Multi-modal 3D Scene Graph (M3DSG), which preserves visual cues by replacing textual relation
comment: 10 pages
♻ ☆ Towards Efficient Certification of Maritime Remote Operation Centers
Additional automation being build into ships implies a shift of crew from ship to shore. However, automated ships still have to be monitored and, in some situations, controlled remotely. These tasks are carried out by human operators located in shore-based remote operation centers. In this work, we present a concept for a hazard database that supports the safeguarding and certification of such remote operation centers. The concept is based on a categorization of hazard sources which we derive from a generic functional architecture. A subsequent preliminary suitability analysis unveils which methods for hazard analysis and risk assessment can adequately fill this hazard database.
♻ ☆ Efficient Learning-Based Control of a Legged Robot in Lunar Gravity
Legged robots are promising candidates for exploring challenging areas on low-gravity bodies such as the Moon, Mars, or asteroids, thanks to their advanced mobility on unstructured terrain. However, as planetary robots' power and thermal budgets are highly restricted, these robots need energy-efficient control approaches that easily transfer to multiple gravity environments. In this work, we introduce a reinforcement learning-based control approach for legged robots with gravity-scaled power-optimized reward functions. We use our approach to develop and validate a locomotion controller and a base pose controller in gravity environments from lunar gravity (1.62 m/s2) to a hypothetical super-Earth (19.62 m/s2). Our approach successfully scales across these gravity levels for locomotion and base pose control with the gravity-scaled reward functions. The power-optimized locomotion controller reached a power consumption for locomotion of 23.4 W in Earth gravity on a 15.65 kg robot at 0.4 m/s, a 23 % improvement over the baseline policy. Additionally, we designed a constant-force spring offload system that allowed us to conduct real-world experiments on legged locomotion in lunar gravity. In lunar gravity, the power-optimized control policy reached 12.2 W, 36 % less than a baseline controller which is not optimized for power efficiency. Our method provides a scalable approach to developing power-efficient locomotion controllers for legged robots across multiple gravity levels.
♻ ☆ Multistep Quasimetric Learning for Scalable Goal-conditioned Reinforcement Learning
Learning how to reach goals in an environment is a longstanding challenge in AI, yet reasoning over long horizons remains a challenge for modern methods. The key question is how to estimate the temporal distance between pairs of observations. While temporal difference methods leverage local updates to provide optimality guarantees, they often perform worse than Monte Carlo methods that perform global updates (e.g., with multi-step returns), which lack such guarantees. We show how these approaches can be integrated into a practical GCRL method that fits a quasimetric distance using a multistep Monte-Carlo return. We show our method outperforms existing GCRL methods on long-horizon simulated tasks with up to 4000 steps, even with visual observations. We also demonstrate that our method can enable stitching in the real-world robotic manipulation domain (Bridge setup). Our approach is the first end-to-end GCRL method that enables multistep stitching in this real-world manipulation domain from an unlabeled offline dataset of visual observations.
♻ ☆ Zero-Shot Temporal Interaction Localization for Egocentric Videos IROS 2025
Locating human-object interaction (HOI) actions within video serves as the foundation for multiple downstream tasks, such as human behavior analysis and human-robot skill transfer. Current temporal action localization methods typically rely on annotated action and object categories of interactions for optimization, which leads to domain bias and low deployment efficiency. Although some recent works have achieved zero-shot temporal action localization (ZS-TAL) with large vision-language models (VLMs), their coarse-grained estimations and open-loop pipelines hinder further performance improvements for temporal interaction localization (TIL). To address these issues, we propose a novel zero-shot TIL approach dubbed EgoLoc to locate the timings of grasp actions for human-object interaction in egocentric videos. EgoLoc introduces a self-adaptive sampling strategy to generate reasonable visual prompts for VLM reasoning. By absorbing both 2D and 3D observations, it directly samples high-quality initial guesses around the possible contact/separation timestamps of HOI according to 3D hand velocities, leading to high inference accuracy and efficiency. In addition, EgoLoc generates closed-loop feedback from visual and dynamic cues to further refine the localization results. Comprehensive experiments on the publicly available dataset and our newly proposed benchmark demonstrate that EgoLoc achieves better temporal interaction localization for egocentric videos compared to state-of-the-art baselines. We have released our code and relevant data as open-source at https://github.com/IRMVLab/EgoLoc.
comment: Accepted to IROS 2025
♻ ☆ Fast Finite-Time Sliding Mode Control for Chattering-Free Trajectory Tracking of Robotic Manipulators
Achieving precise and efficient trajectory tracking in robotic arms remains a key challenge due to system uncertainties and chattering effects in conventional sliding mode control (SMC). This paper presents a chattering-free fast terminal sliding mode control (FTSMC) strategy for a three-degree-of-freedom (3-DOF) robotic arm, designed to enhance tracking accuracy and robustness while ensuring finite-time convergence. The control framework is developed using Newton-Euler dynamics, followed by a state-space representation that captures the system's angular position and velocity. By incorporating an improved sliding surface and a Lyapunov-based stability analysis, the proposed FTSMC effectively mitigates chattering while preserving the advantages of SMC, such as fast response and strong disturbance rejection. The controller's performance is rigorously evaluated through comparisons with conventional PD sliding mode control (PDSMC) and terminal sliding mode control (TSMC). Simulation results demonstrate that the proposed approach achieves superior trajectory tracking performance, faster convergence, and enhanced stability compared to existing methods, making it a promising solution for high-precision robotic applications.
♻ ☆ Convergent Functions, Divergent Forms
We introduce LOKI, a compute-efficient framework for co-designing morphologies and control policies that generalize across unseen tasks. Inspired by biological adaptation -- where animals quickly adjust to morphological changes -- our method overcomes the inefficiencies of traditional evolutionary and quality-diversity algorithms. We propose learning convergent functions: shared control policies trained across clusters of morphologically similar designs in a learned latent space, drastically reducing the training cost per design. Simultaneously, we promote divergent forms by replacing mutation with dynamic local search, enabling broader exploration and preventing premature convergence. The policy reuse allows us to explore 780$\times$ more designs using 78% fewer simulation steps and 40% less compute per design. Local competition paired with a broader search results in a diverse set of high-performing final morphologies. Using the UNIMAL design space and a flat-terrain locomotion task, LOKI discovers a rich variety of designs -- ranging from quadrupeds to crabs, bipedals, and spinners -- far more diverse than those produced by prior work. These morphologies also transfer better to unseen downstream tasks in agility, stability, and manipulation domains (e.g., 2$\times$ higher reward on bump and push box incline tasks). Overall, our approach produces designs that are both diverse and adaptable, with substantially greater sample efficiency than existing co-design methods. (Project website: https://loki-codesign.github.io/)
♻ ☆ Harnessing Bounded-Support Evolution Strategies for Policy Refinement
Improving competent robot policies with on-policy RL is often hampered by noisy, low-signal gradients. We revisit Evolution Strategies (ES) as a policy-gradient proxy and localize exploration with bounded, antithetic triangular perturbations, suitable for policy refinement. We propose Triangular-Distribution ES (TD-ES) which pairs bounded triangular noise with a centered-rank finite-difference estimator to deliver stable, parallelizable, gradient-free updates. In a two-stage pipeline - PPO pretraining followed by TD-ES refinement - this preserves early sample efficiency while enabling robust late-stage gains. Across a suite of robotic manipulation tasks, TD-ES raises success rates by 26.5% relative to PPO and greatly reduces variance, offering a simple, compute-light path to reliable refinement.
comment: 10 pages, 6 figures, to be published in Australasian Conference on Robotics and Automation (ACRA 2025)
♻ ☆ Your Ride, Your Rules: Psychology and Cognition Enabled Automated Driving Systems
Despite rapid advances in autonomous driving technology, current autonomous vehicles (AVs) lack effective bidirectional human-machine communication, limiting their ability to personalize the riding experience and recover from uncertain or immobilized states. This limitation undermines occupant comfort and trust, potentially hindering the adoption of AV technologies. We propose PACE-ADS (Psychology and Cognition Enabled Automated Driving Systems), a human-centered autonomy framework enabling AVs to sense, interpret, and respond to both external traffic conditions and internal occupant states. PACE-ADS uses an agentic workflow where three foundation model agents collaborate: the Driver Agent interprets the external environment; the Psychologist Agent decodes passive psychological signals (e.g., EEG, heart rate, facial expressions) and active cognitive inputs (e.g., verbal commands); and the Coordinator Agent synthesizes these inputs to generate high-level decisions that enhance responsiveness and personalize the ride. PACE-ADS complements, rather than replaces, conventional AV modules. It operates at the semantic planning layer, while delegating low-level control to native systems. The framework activates only when changes in the rider's psychological state are detected or when occupant instructions are issued. It integrates into existing AV platforms with minimal adjustments, positioning PACE-ADS as a scalable enhancement. We evaluate it in closed-loop simulations across diverse traffic scenarios, including intersections, pedestrian interactions, work zones, and car-following. Results show improved ride comfort, dynamic behavioral adjustment, and safe recovery from edge-case scenarios via autonomous reasoning or rider input. PACE-ADS bridges the gap between technical autonomy and human-centered mobility.
comment: 32 pages, one colummns
♻ ☆ GUIDES: Guidance Using Instructor-Distilled Embeddings for Pre-trained Robot Policy Enhancement IROS 2025
Pre-trained robot policies serve as the foundation of many validated robotic systems, which encapsulate extensive embodied knowledge. However, they often lack the semantic awareness characteristic of foundation models, and replacing them entirely is impractical in many situations due to high costs and the loss of accumulated knowledge. To address this gap, we introduce GUIDES, a lightweight framework that augments pre-trained policies with semantic guidance from foundation models without requiring architectural redesign. GUIDES employs a fine-tuned vision-language model (Instructor) to generate contextual instructions, which are encoded by an auxiliary module into guidance embeddings. These embeddings are injected into the policy's latent space, allowing the legacy model to adapt to this new semantic input through brief, targeted fine-tuning. For inference-time robustness, a large language model-based Reflector monitors the Instructor's confidence and, when confidence is low, initiates a reasoning loop that analyzes execution history, retrieves relevant examples, and augments the VLM's context to refine subsequent actions. Extensive validation in the RoboCasa simulation environment across diverse policy architectures shows consistent and substantial improvements in task success rates. Real-world deployment on a UR5 robot further demonstrates that GUIDES enhances motion precision for critical sub-tasks such as grasping. Overall, GUIDES offers a practical and resource-efficient pathway to upgrade, rather than replace, validated robot policies.
comment: 8 pages, 4 figures, Accepted by IEEE IROS 2025 Workshop WIR-M
♻ ☆ Less is More: Contextual Sampling for Nonlinear Data-Driven Predictive Control
Data-Driven Predictive Control (DPC) optimizes system behavior directly from measured trajectories without requiring an explicit model. However, its computational cost scales with dataset size, limiting real-time applicability to nonlinear robotic systems. For robotic tasks such as trajectory tracking and motion planning, real-time feasibility and numerical robustness are essential. Nonlinear DPC often relies on large datasets or learned nonlinear representations to ensure accuracy, both of which increase computational demand. We propose Contextual Sampling, a dynamic data selection strategy that adaptively selects the most relevant trajectories based on the current state and reference. By reducing dataset size while preserving representativeness, it improves computational efficiency. Experiments on a scaled autonomous vehicle and a quadrotor show that Contextual Sampling achieves comparable or better tracking than Random Sampling with fewer trajectories, enabling real-time feasibility. Compared with Select-DPC, it achieves similar tracking accuracy at lower computational cost. In comparison with the full DPC formulation without sampling, Contextual Sampling attains comparable tracking performance while requiring less computation, highlighting the benefit of efficient data selection in data-driven predictive control.
comment: Submitted to ECC 2026 on November 14, 2025
♻ ☆ Automating RT Planning at Scale: High Quality Data For AI Training
Radiotherapy (RT) planning is complex, subjective, and time-intensive. Advances with artificial intelligence (AI) promise to improve its precision and efficiency, but progress is often limited by the scarcity of large, standardized datasets. To address this, we introduce the Automated Iterative RT Planning (AIRTP) system, a scalable solution for generating high-quality treatment plans. This scalable solution is designed to generate substantial volumes of consistently high-quality treatment plans, overcoming a key obstacle in the advancement of AI-driven RT planning. Our AIRTP pipeline adheres to clinical guidelines and automates essential steps, including organ-at-risk (OAR) contouring, helper structure creation, beam setup, optimization, and plan quality improvement, using AI integrated with RT planning software like Varian Eclipse. Furthermore, a novel approach for determining optimization parameters to reproduce 3D dose distributions, i.e. a method to convert dose predictions to deliverable treatment plans constrained by machine limitations is proposed. A comparative analysis of plan quality reveals that our automated pipeline produces treatment plans of quality comparable to those generated manually, which traditionally require several hours of labor per plan. Committed to public research, the first data release of our AIRTP pipeline includes nine cohorts covering head-and-neck and lung cancer sites to support an AAPM 2025 challenge. To our best knowledge, this dataset features more than 10 times number of plans compared to the largest existing well-curated public dataset. Repo: https://github.com/RiqiangGao/GDP-HMM_AAPMChallenge.
comment: radiotherapy planning, data for AI training
Robotics 46
☆ Robot Crash Course: Learning Soft and Stylized Falling
Despite recent advances in robust locomotion, bipedal robots operating in the real world remain at risk of falling. While most research focuses on preventing such events, we instead concentrate on the phenomenon of falling itself. Specifically, we aim to reduce physical damage to the robot while providing users with control over a robot's end pose. To this end, we propose a robot agnostic reward function that balances the achievement of a desired end pose with impact minimization and the protection of critical robot parts during reinforcement learning. To make the policy robust to a broad range of initial falling conditions and to enable the specification of an arbitrary and unseen end pose at inference time, we introduce a simulation-based sampling strategy of initial and end poses. Through simulated and real-world experiments, our work demonstrates that even bipedal robots can perform controlled, soft falls.
☆ Optimizing the flight path for a scouting Uncrewed Aerial Vehicle
Post-disaster situations pose unique navigation challenges. One of those challenges is the unstructured nature of the environment, which makes it hard to layout paths for rescue vehicles. We propose the use of Uncrewed Aerial Vehicle (UAV) in such scenario to perform reconnaissance across the environment. To accomplish this, we propose an optimization-based approach to plan a path for the UAV at optimal height where the sensors of the UAV can cover the most area and collect data with minimum uncertainty.
comment: This paper was prepared as an end of semester project for ME8710: Engineering Optimization, Clemson University. Consists of 7 pages and 8 figures
☆ Safe Planning in Interactive Environments via Iterative Policy Updates and Adversarially Robust Conformal Prediction
Safe planning of an autonomous agent in interactive environments -- such as the control of a self-driving vehicle among pedestrians and human-controlled vehicles -- poses a major challenge as the behavior of the environment is unknown and reactive to the behavior of the autonomous agent. This coupling gives rise to interaction-driven distribution shifts where the autonomous agent's control policy may change the environment's behavior, thereby invalidating safety guarantees in existing work. Indeed, recent works have used conformal prediction (CP) to generate distribution-free safety guarantees using observed data of the environment. However, CP's assumption on data exchangeability is violated in interactive settings due to a circular dependency where a control policy update changes the environment's behavior, and vice versa. To address this gap, we propose an iterative framework that robustly maintains safety guarantees across policy updates by quantifying the potential impact of a planned policy update on the environment's behavior. We realize this via adversarially robust CP where we perform a regular CP step in each episode using observed data under the current policy, but then transfer safety guarantees across policy updates by analytically adjusting the CP result to account for distribution shifts. This adjustment is performed based on a policy-to-trajectory sensitivity analysis, resulting in a safe, episodic open-loop planner. We further conduct a contraction analysis of the system providing conditions under which both the CP results and the policy updates are guaranteed to converge. We empirically demonstrate these safety and convergence guarantees on a two-dimensional car-pedestrian case study. To the best of our knowledge, these are the first results that provide valid safety guarantees in such interactive settings.
☆ From Fold to Function: Dynamic Modeling and Simulation-Driven Design of Origami Mechanisms
Origami-inspired mechanisms can transform flat sheets into functional three-dimensional dynamic structures that are lightweight, compact, and capable of complex motion. These properties make origami increasingly valuable in robotic and deployable systems. However, accurately simulating their folding behavior and interactions with the environment remains challenging. To address this, we present a design framework for origami mechanism simulation that utilizes MuJoCo's deformable-body capabilities. In our approach, origami sheets are represented as graphs of interconnected deformable elements with user-specified constraints such as creases and actuation, defined through an intuitive graphical user interface (GUI). This framework allows users to generate physically consistent simulations that capture both the geometric structure of origami mechanisms and their interactions with external objects and surfaces. We demonstrate our method's utility through a case study on an origami catapult, where design parameters are optimized in simulation using the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) and validated experimentally on physical prototypes. The optimized structure achieves improved throwing performance, illustrating how our system enables rapid, simulation-driven origami design, optimization, and analysis.
comment: 8 Pages, 9 Figures, Submitted to IEEE RoboSoft
☆ SemanticVLA: Semantic-Aligned Sparsification and Enhancement for Efficient Robotic Manipulation AAAI 2026
Vision-Language-Action (VLA) models have advanced in robotic manipulation, yet practical deployment remains hindered by two key limitations: 1) perceptual redundancy, where irrelevant visual inputs are processed inefficiently, and 2) superficial instruction-vision alignment, which hampers semantic grounding of actions. In this paper, we propose SemanticVLA, a novel VLA framework that performs Semantic-Aligned Sparsification and Enhancement for Efficient Robotic Manipulation. Specifically: 1) To sparsify redundant perception while preserving semantic alignment, Semantic-guided Dual Visual Pruner (SD-Pruner) performs: Instruction-driven Pruner (ID-Pruner) extracts global action cues and local semantic anchors in SigLIP; Spatial-aggregation Pruner (SA-Pruner) compacts geometry-rich features into task-adaptive tokens in DINOv2. 2) To exploit sparsified features and integrate semantics with spatial geometry, Semantic-complementary Hierarchical Fuser (SH-Fuser) fuses dense patches and sparse tokens across SigLIP and DINOv2 for coherent representation. 3) To enhance the transformation from perception to action, Semantic-conditioned Action Coupler (SA-Coupler) replaces the conventional observation-to-DoF approach, yielding more efficient and interpretable behavior modeling for manipulation tasks. Extensive experiments on simulation and real-world tasks show that SemanticVLA sets a new SOTA in both performance and efficiency. SemanticVLA surpasses OpenVLA on LIBERO benchmark by 21.1% in success rate, while reducing training cost and inference latency by 3.0-fold and 2.7-fold.SemanticVLA is open-sourced and publicly available at https://github.com/JiuTian-VL/SemanticVLA
comment: Accepted to AAAI 2026 (Oral), Project Page: https://github.com/JiuTian-VL/SemanticVLA
☆ Improving dependability in robotized bolting operations
Bolting operations are critical in industrial assembly and in the maintenance of scientific facilities, requiring high precision and robustness to faults. Although robotic solutions have the potential to improve operational safety and effectiveness, current systems still lack reliable autonomy and fault management capabilities. To address this gap, we propose a control framework for dependable robotized bolting tasks and instantiate it on a specific robotic system. The system features a control architecture ensuring accurate driving torque control and active compliance throughout the entire operation, enabling safe interaction even under fault conditions. By designing a multimodal human-robot interface (HRI) providing real-time visualization of relevant system information and supporting seamless transitions between automatic and manual control, we improve operator situation awareness and fault detection capabilities. A high-level supervisor (SV) coordinates the execution and manages transitions between control modes, ensuring consistency with the supervisory control (SVC) paradigm, while preserving the human operator's authority. The system is validated in a representative bolting operation involving pipe flange joining, under several fault conditions. The results demonstrate improved fault detection capabilities, enhanced operator situational awareness, and accurate and compliant execution of the bolting operation. However, they also reveal the limitations of relying on a single camera to achieve full situational awareness.
comment: 10 pages, 9 figures
☆ LongComp: Long-Tail Compositional Zero-Shot Generalization for Robust Trajectory Prediction
Methods for trajectory prediction in Autonomous Driving must contend with rare, safety-critical scenarios that make reliance on real-world data collection alone infeasible. To assess robustness under such conditions, we propose new long-tail evaluation settings that repartition datasets to create challenging out-of-distribution (OOD) test sets. We first introduce a safety-informed scenario factorization framework, which disentangles scenarios into discrete ego and social contexts. Building on analogies to compositional zero-shot image-labeling in Computer Vision, we then hold out novel context combinations to construct challenging closed-world and open-world settings. This process induces OOD performance gaps in future motion prediction of 5.0% and 14.7% in closed-world and open-world settings, respectively, relative to in-distribution performance for a state-of-the-art baseline. To improve generalization, we extend task-modular gating networks to operate within trajectory prediction models, and develop an auxiliary, difficulty-prediction head to refine internal representations. Our strategies jointly reduce the OOD performance gaps to 2.8% and 11.5% in the two settings, respectively, while still improving in-distribution performance.
comment: 8 pages, 3 figures
☆ nuPlan-R: A Closed-Loop Planning Benchmark for Autonomous Driving via Reactive Multi-Agent Simulation
Recent advances in closed-loop planning benchmarks have significantly improved the evaluation of autonomous vehicles. However, existing benchmarks still rely on rule-based reactive agents such as the Intelligent Driver Model (IDM), which lack behavioral diversity and fail to capture realistic human interactions, leading to oversimplified traffic dynamics. To address these limitations, we present nuPlan-R, a new reactive closed-loop planning benchmark that integrates learning-based reactive multi-agent simulation into the nuPlan framework. Our benchmark replaces the rule-based IDM agents with noise-decoupled diffusion-based reactive agents and introduces an interaction-aware agent selection mechanism to ensure both realism and computational efficiency. Furthermore, we extend the benchmark with two additional metrics to enable a more comprehensive assessment of planning performance. Extensive experiments demonstrate that our reactive agent model produces more realistic, diverse, and human-like traffic behaviors, leading to a benchmark environment that better reflects real-world interactive driving. We further reimplement a collection of rule-based, learning-based, and hybrid planning approaches within our nuPlan-R benchmark, providing a clearer reflection of planner performance in complex interactive scenarios and better highlighting the advantages of learning-based planners in handling complex and dynamic scenarios. These results establish nuPlan-R as a new standard for fair, reactive, and realistic closed-loop planning evaluation. We will open-source the code for the new benchmark.
comment: 8 pages, 3 figures
☆ MSGNav: Unleashing the Power of Multi-modal 3D Scene Graph for Zero-Shot Embodied Navigation
Embodied navigation is a fundamental capability for robotic agents operating. Real-world deployment requires open vocabulary generalization and low training overhead, motivating zero-shot methods rather than task-specific RL training. However, existing zero-shot methods that build explicit 3D scene graphs often compress rich visual observations into text-only relations, leading to high construction cost, irreversible loss of visual evidence, and constrained vocabularies. To address these limitations, we introduce the Multi-modal 3D Scene Graph (M3DSG), which preserves visual cues by replacing textual relational edges with dynamically assigned images. Built on M3DSG, we propose MSGNav, a zero-shot navigation system that includes a Key Subgraph Selection module for efficient reasoning, an Adaptive Vocabulary Update module for open vocabulary support, and a Closed-Loop Reasoning module for accurate exploration reasoning. Additionally, we further identify the last-mile problem in zero-shot navigation - determining the feasible target location with a suitable final viewpoint, and propose a Visibility-based Viewpoint Decision module to explicitly resolve it. Comprehensive experimental results demonstrate that MSGNav achieves state-of-the-art performance on GOAT-Bench and HM3D-OVON datasets. The open-source code will be publicly available.
comment: 10 pages
☆ RoboBenchMart: Benchmarking Robots in Retail Environment
Most existing robotic manipulation benchmarks focus on simplified tabletop scenarios, typically involving a stationary robotic arm interacting with various objects on a flat surface. To address this limitation, we introduce RoboBenchMart, a more challenging and realistic benchmark designed for dark store environments, where robots must perform complex manipulation tasks with diverse grocery items. This setting presents significant challenges, including dense object clutter and varied spatial configurations -- with items positioned at different heights, depths, and in close proximity. By targeting the retail domain, our benchmark addresses a setting with strong potential for near-term automation impact. We demonstrate that current state-of-the-art generalist models struggle to solve even common retail tasks. To support further research, we release the RoboBenchMart suite, which includes a procedural store layout generator, a trajectory generation pipeline, evaluation tools and fine-tuned baseline models.
☆ VISTA: A Vision and Intent-Aware Social Attention Framework for Multi-Agent Trajectory Prediction WACV 2026
Multi-agent trajectory prediction is crucial for autonomous systems operating in dense, interactive environments. Existing methods often fail to jointly capture agents' long-term goals and their fine-grained social interactions, which leads to unrealistic multi-agent futures. We propose VISTA, a recursive goal-conditioned transformer for multi-agent trajectory forecasting. VISTA combines (i) a cross-attention fusion module that integrates long-horizon intent with past motion, (ii) a social-token attention mechanism for flexible interaction modeling across agents, and (iii) pairwise attention maps that make social influence patterns interpretable at inference time. Our model turns single-agent goal-conditioned prediction into a coherent multi-agent forecasting framework. Beyond standard displacement metrics, we evaluate trajectory collision rates as a measure of joint realism. On the high-density MADRAS benchmark and on SDD, VISTA achieves state-of-the-art accuracy and substantially fewer collisions. On MADRAS, it reduces the average collision rate of strong baselines from 2.14 to 0.03 percent, and on SDD it attains zero collisions while improving ADE, FDE, and minFDE. These results show that VISTA generates socially compliant, goal-aware, and interpretable trajectories, making it promising for safety-critical autonomous systems.
comment: Paper accepted at WACV 2026
☆ Learning a Thousand Tasks in a Day
Humans are remarkably efficient at learning tasks from demonstrations, but today's imitation learning methods for robot manipulation often require hundreds or thousands of demonstrations per task. We investigate two fundamental priors for improving learning efficiency: decomposing manipulation trajectories into sequential alignment and interaction phases, and retrieval-based generalisation. Through 3,450 real-world rollouts, we systematically study this decomposition. We compare different design choices for the alignment and interaction phases, and examine generalisation and scaling trends relative to today's dominant paradigm of behavioural cloning with a single-phase monolithic policy. In the few-demonstrations-per-task regime (<10 demonstrations), decomposition achieves an order of magnitude improvement in data efficiency over single-phase learning, with retrieval consistently outperforming behavioural cloning for both alignment and interaction. Building on these insights, we develop Multi-Task Trajectory Transfer (MT3), an imitation learning method based on decomposition and retrieval. MT3 learns everyday manipulation tasks from as little as a single demonstration each, whilst also generalising to novel object instances. This efficiency enables us to teach a robot 1,000 distinct everyday tasks in under 24 hours of human demonstrator time. Through 2,200 additional real-world rollouts, we reveal MT3's capabilities and limitations across different task families. Videos of our experiments can be found on at https://www.robot-learning.uk/learning-1000-tasks.
comment: This is the author's version of the work. It is posted here by permission of the AAAS for personal use, not for redistribution. The definitive version was published in Science Robotics on 12 November 2025, DOI: https://www.science.org/doi/10.1126/scirobotics.adv7594. Link to project website: https://www.robot-learning.uk/learning-1000-tasks
☆ Opinion: Towards Unified Expressive Policy Optimization for Robust Robot Learning NeurIPS 2025
Offline-to-online reinforcement learning (O2O-RL) has emerged as a promising paradigm for safe and efficient robotic policy deployment but suffers from two fundamental challenges: limited coverage of multimodal behaviors and distributional shifts during online adaptation. We propose UEPO, a unified generative framework inspired by large language model pretraining and fine-tuning strategies. Our contributions are threefold: (1) a multi-seed dynamics-aware diffusion policy that efficiently captures diverse modalities without training multiple models; (2) a dynamic divergence regularization mechanism that enforces physically meaningful policy diversity; and (3) a diffusion-based data augmentation module that enhances dynamics model generalization. On the D4RL benchmark, UEPO achieves +5.9\% absolute improvement over Uni-O4 on locomotion tasks and +12.4\% on dexterous manipulation, demonstrating strong generalization and scalability.
comment: Accepted by NeurIPS 2025 Workshop on Embodied World Models for Decision Making
☆ Physics-informed Machine Learning for Static Friction Modeling in Robotic Manipulators Based on Kolmogorov-Arnold Networks
Friction modeling plays a crucial role in achieving high-precision motion control in robotic operating systems. Traditional static friction models (such as the Stribeck model) are widely used due to their simple forms; however, they typically require predefined functional assumptions, which poses significant challenges when dealing with unknown functional structures. To address this issue, this paper proposes a physics-inspired machine learning approach based on the Kolmogorov Arnold Network (KAN) for static friction modeling of robotic joints. The method integrates spline activation functions with a symbolic regression mechanism, enabling model simplification and physical expression extraction through pruning and attribute scoring, while maintaining both high prediction accuracy and interpretability. We first validate the method's capability to accurately identify key parameters under known functional models, and further demonstrate its robustness and generalization ability under conditions with unknown functional structures and noisy data. Experiments conducted on both synthetic data and real friction data collected from a six-degree-of-freedom industrial manipulator show that the proposed method achieves a coefficient of determination greater than 0.95 across various tasks and successfully extracts concise and physically meaningful friction expressions. This study provides a new perspective for interpretable and data-driven robotic friction modeling with promising engineering applicability.
☆ DecARt Leg: Design and Evaluation of a Novel Humanoid Robot Leg with Decoupled Actuation for Agile Locomotion
In this paper, we propose a novel design of an electrically actuated robotic leg, called the DecARt (Decoupled Actuation Robot) Leg, aimed at performing agile locomotion. This design incorporates several new features, such as the use of a quasi-telescopic kinematic structure with rotational motors for decoupled actuation, a near-anthropomorphic leg appearance with a forward facing knee, and a novel multi-bar system for ankle torque transmission from motors placed above the knee. To analyze the agile locomotion capabilities of the design numerically, we propose a new descriptive metric, called the `Fastest Achievable Swing Time` (FAST), and perform a quantitative evaluation of the proposed design and compare it with other designs. Then we evaluate the performance of the DecARt Leg-based robot via extensive simulation and preliminary hardware experiments.
☆ Phantom Menace: Exploring and Enhancing the Robustness of VLA Models against Physical Sensor Attacks AAAI 2026
Vision-Language-Action (VLA) models revolutionize robotic systems by enabling end-to-end perception-to-action pipelines that integrate multiple sensory modalities, such as visual signals processed by cameras and auditory signals captured by microphones. This multi-modality integration allows VLA models to interpret complex, real-world environments using diverse sensor data streams. Given the fact that VLA-based systems heavily rely on the sensory input, the security of VLA models against physical-world sensor attacks remains critically underexplored. To address this gap, we present the first systematic study of physical sensor attacks against VLAs, quantifying the influence of sensor attacks and investigating the defenses for VLA models. We introduce a novel ``Real-Sim-Real'' framework that automatically simulates physics-based sensor attack vectors, including six attacks targeting cameras and two targeting microphones, and validates them on real robotic systems. Through large-scale evaluations across various VLA architectures and tasks under varying attack parameters, we demonstrate significant vulnerabilities, with susceptibility patterns that reveal critical dependencies on task types and model designs. We further develop an adversarial-training-based defense that enhances VLA robustness against out-of-distribution physical perturbations caused by sensor attacks while preserving model performance. Our findings expose an urgent need for standardized robustness benchmarks and mitigation strategies to secure VLA deployments in safety-critical environments.
comment: Accepted by AAAI 2026
☆ Audio-VLA: Adding Contact Audio Perception to Vision-Language-Action Model for Robotic Manipulation
The Vision-Language-Action models (VLA) have achieved significant advances in robotic manipulation recently. However, vision-only VLA models create fundamental limitations, particularly in perceiving interactive and manipulation dynamic processes. This paper proposes Audio-VLA, a multimodal manipulation policy that leverages contact audio to perceive contact events and dynamic process feedback. Audio-VLA overcomes the vision-only constraints of VLA models. Additionally, this paper introduces the Task Completion Rate (TCR) metric to systematically evaluate dynamic operational processes. Audio-VLA employs pre-trained DINOv2 and SigLIP as visual encoders, AudioCLIP as the audio encoder, and Llama2 as the large language model backbone. We apply LoRA fine-tuning to these pre-trained modules to achieve robust cross-modal understanding of both visual and acoustic inputs. A multimodal projection layer aligns features from different modalities into the same feature space. Moreover RLBench and LIBERO simulation environments are enhanced by adding collision-based audio generation to provide realistic sound feedback during object interactions. Since current robotic manipulation evaluations focus on final outcomes rather than providing systematic assessment of dynamic operational processes, the proposed TCR metric measures how well robots perceive dynamic processes during manipulation, creating a more comprehensive evaluation metric. Extensive experiments on LIBERO, RLBench, and two real-world tasks demonstrate Audio-VLA's superior performance over vision-only comparative methods, while the TCR metric effectively quantifies dynamic process perception capabilities.
☆ A Study on Enhancing the Generalization Ability of Visuomotor Policies via Data Augmentation
The generalization ability of visuomotor policy is crucial, as a good policy should be deployable across diverse scenarios. Some methods can collect large amounts of trajectory augmentation data to train more generalizable imitation learning policies, aimed at handling the random placement of objects on the scene's horizontal plane. However, the data generated by these methods still lack diversity, which limits the generalization ability of the trained policy. To address this, we investigate the performance of policies trained by existing methods across different scene layout factors via automate the data generation for those factors that significantly impact generalization. We have created a more extensively randomized dataset that can be efficiently and automatically generated with only a small amount of human demonstration. The dataset covers five types of manipulators and two types of grippers, incorporating extensive randomization factors such as camera pose, lighting conditions, tabletop texture, and table height across six manipulation tasks. We found that all of these factors influence the generalization ability of the policy. Applying any form of randomization enhances policy generalization, with diverse trajectories particularly effective in bridging visual gap. Notably, we investigated on low-cost manipulator the effect of the scene randomization proposed in this work on enhancing the generalization capability of visuomotor policies for zero-shot sim-to-real transfer.
☆ Harnessing Bounded-Support Evolution Strategies for Policy Refinement
Improving competent robot policies with on-policy RL is often hampered by noisy, low-signal gradients. We revisit Evolution Strategies (ES) as a policy-gradient proxy and localize exploration with bounded, antithetic triangular perturbations, suitable for policy refinement. We propose Triangular-Distribution ES (TD-ES) which pairs bounded triangular noise with a centered-rank finite-difference estimator to deliver stable, parallelizable, gradient-free updates. In a two-stage pipeline -- PPO pretraining followed by TD-ES refinement -- this preserves early sample efficiency while enabling robust late-stage gains. Across a suite of robotic manipulation tasks, TD-ES raises success rates by 26.5% relative to PPO and greatly reduces variance, offering a simple, compute-light path to reliable refinement.
comment: 10 pages, 6 figures, to be published in Australasian Conference on Robotics and Automation (ACRA 2025)
☆ PuffyBot: An Untethered Shape Morphing Robot for Multi-environment Locomotion
Amphibians adapt their morphologies and motions to accommodate movement in both terrestrial and aquatic environments. Inspired by these biological features, we present PuffyBot, an untethered shape morphing robot capable of changing its body morphology to navigate multiple environments. Our robot design leverages a scissor-lift mechanism driven by a linear actuator as its primary structure to achieve shape morphing. The transformation enables a volume change from 255.00 cm3 to 423.75 cm3, modulating the buoyant force to counteract a downward force of 3.237 N due to 330 g mass of the robot. A bell-crank linkage is integrated with the scissor-lift mechanism, which adjusts the servo-actuated limbs by 90 degrees, allowing a seamless transition between crawling and swimming modes. The robot is fully waterproof, using thermoplastic polyurethane (TPU) fabric to ensure functionality in aquatic environments. The robot can operate untethered for two hours with an onboard battery of 1000 mA h. Our experimental results demonstrate multi-environment locomotion, including crawling on the land, crawling on the underwater floor, swimming on the water surface, and bimodal buoyancy adjustment to submerge underwater or resurface. These findings show the potential of shape morphing to create versatile and energy efficient robotic platforms suitable for diverse environments.
comment: 8 pages, 10 figures, IEEE RoboSoft 2026
☆ Provably Safe Stein Variational Clarity-Aware Informative Planning
Autonomous robots are increasingly deployed for information-gathering tasks in environments that vary across space and time. Planning informative and safe trajectories in such settings is challenging because information decays when regions are not revisited. Most existing planners model information as static or uniformly decaying, ignoring environments where the decay rate varies spatially; those that model non-uniform decay often overlook how it evolves along the robot's motion, and almost all treat safety as a soft penalty. In this paper, we address these challenges. We model uncertainty in the environment using clarity, a normalized representation of differential entropy from our earlier work that captures how information improves through new measurements and decays over time when regions are not revisited. Building on this, we present Stein Variational Clarity-Aware Informative Planning, a framework that embeds clarity dynamics within trajectory optimization and enforces safety through a low-level filtering mechanism based on our earlier gatekeeper framework for safety verification. The planner performs Bayesian inference-based learning via Stein variational inference, refining a distribution over informative trajectories while filtering each nominal Stein informative trajectory to ensure safety. Hardware experiments and simulations across environments with varying decay rates and obstacles demonstrate consistent safety and reduced information deficits.
comment: Submitted to Learning for Dynamics & Control Conference 2026. Paper Website: (https://usahai18.github.io/stein_clarity/)
☆ Decentralized Swarm Control via SO(3) Embeddings for 3D Trajectories
This paper presents a novel decentralized approach for achieving emergent behavior in multi-agent systems with minimal information sharing. Based on prior work in simple orbits, our method produces a broad class of stable, periodic trajectories by stabilizing the system around a Lie group-based geometric embedding. Employing the Lie group SO(3), we generate a wider range of periodic curves than existing quaternion-based methods. Furthermore, we exploit SO(3) properties to eliminate the need for velocity inputs, allowing agents to receive only position inputs. We also propose a novel phase controller that ensures uniform agent separation, along with a formal stability proof. Validation through simulations and experiments showcases the method's adaptability to complex low-level dynamics and disturbances.
☆ MIGHTY: Hermite Spline-based Efficient Trajectory Planning
Hard-constraint trajectory planners often rely on commercial solvers and demand substantial computational resources. Existing soft-constraint methods achieve faster computation, but either (1) decouple spatial and temporal optimization or (2) restrict the search space. To overcome these limitations, we introduce MIGHTY, a Hermite spline-based planner that performs spatiotemporal optimization while fully leveraging the continuous search space of a spline. In simulation, MIGHTY achieves a 9.3% reduction in computation time and a 13.1% reduction in travel time over state-of-the-art baselines, with a 100% success rate. In hardware, MIGHTY completes multiple high-speed flights up to 6.7 m/s in a cluttered static environment and long-duration flights with dynamically added obstacles.
comment: 9 pages, 10 figures
☆ An Investigation into Dynamically Extensible and Retractable Robotic Leg Linkages for Multi-task Execution in Search and Rescue Scenarios
Search and rescue (SAR) robots are required to quickly traverse terrain and perform high-force rescue tasks, necessitating both terrain adaptability and controlled high-force output. Few platforms exist today for SAR, and fewer still have the ability to cover both tasks of terrain adaptability and high-force output when performing extraction. While legged robots offer significant ability to traverse uneven terrain, they typically are unable to incorporate mechanisms that provide variable high-force outputs, unlike traditional wheel-based drive trains. This work introduces a novel concept for a dynamically extensible and retractable robot leg. Leveraging a dynamically extensible and retractable five-bar linkage design, it allows for mechanically switching between height-advantaged and force-advantaged configurations via a geometric transformation. A testbed evaluated leg performance across linkage geometries and operating modes, with empirical and analytical analyses conducted on stride length, force output, and stability. The results demonstrate that the morphing leg offers a promising path toward SAR robots that can both navigate terrain quickly and perform rescue tasks effectively.
☆ $\rm{A}^{\rm{SAR}}$: $\varepsilon$-Optimal Graph Search for Minimum Expected-Detection-Time Paths with Path Budget Constraints for Search and Rescue ICRA
Searches are conducted to find missing persons and/or objects given uncertain information, imperfect observers and large search areas in Search and Rescue (SAR). In many scenarios, such as Maritime SAR, expected survival times are short and optimal search could increase the likelihood of success. This optimization problem is complex for nontrivial problems given its probabilistic nature. Stochastic optimization methods search large problems by nondeterministically sampling the space to reduce the effective size of the problem. This has been used in SAR planning to search otherwise intractably large problems but the stochastic nature provides no formal guarantees on the quality of solutions found in finite time. This paper instead presents $\rm{A}^{\rm{SAR}}$, an $\varepsilon$-optimal search algorithm for SAR planning. It calculates a heuristic to bound the search space and uses graph-search methods to find solutions that are formally guaranteed to be within a user-specified factor, $\varepsilon$, of the optimal solution. It finds better solutions faster than existing optimization approaches in operational simulations. It is also demonstrated with a real-world field trial on Lake Ontario, Canada, where it was used to locate a drifting manikin in only 150s.
comment: Submitted to IEEE International Conference on Robotics and Automation (ICRA) 2026, 8 pages, 4 figures, 2 tables. The corresponding video can be found at https://www.youtube.com/watch?v=R73-YKWY78M
☆ From Framework to Reliable Practice: End-User Perspectives on Social Robots in Public Spaces
As social robots increasingly enter public environments, their acceptance depends not only on technical reliability but also on ethical integrity, accessibility, and user trust. This paper reports on a pilot deployment of an ARI social robot functioning as a university receptionist, designed in alignment with the SecuRoPS framework for secure and ethical social robot deployment. Thirty-five students and staff interacted with the robot and provided structured feedback on safety, privacy, usability, accessibility, and transparency. The results show generally positive perceptions of physical safety, data protection, and ethical behavior, while also highlighting challenges related to accessibility, inclusiveness, and dynamic interaction. Beyond the empirical findings, the study demonstrates how theoretical frameworks for ethical and secure design can be implemented in real-world contexts through end-user evaluation. It also provides a public GitHub repository containing reusable templates for ARI robot applications to support reproducibility and lower the entry barrier for new researchers. By combining user perspectives with practical technical resources, this work contributes to ongoing discussions in AI and society and supports the development of trustworthy, inclusive, and ethically responsible social robots for public spaces.
comment: 26 pages, 3 figures
☆ Attentive Feature Aggregation or: How Policies Learn to Stop Worrying about Robustness and Attend to Task-Relevant Visual Cues
The adoption of pre-trained visual representations (PVRs), leveraging features from large-scale vision models, has become a popular paradigm for training visuomotor policies. However, these powerful representations can encode a broad range of task-irrelevant scene information, making the resulting trained policies vulnerable to out-of-domain visual changes and distractors. In this work we address visuomotor policy feature pooling as a solution to the observed lack of robustness in perturbed scenes. We achieve this via Attentive Feature Aggregation (AFA), a lightweight, trainable pooling mechanism that learns to naturally attend to task-relevant visual cues, ignoring even semantically rich scene distractors. Through extensive experiments in both simulation and the real world, we demonstrate that policies trained with AFA significantly outperform standard pooling approaches in the presence of visual perturbations, without requiring expensive dataset augmentation or fine-tuning of the PVR. Our findings show that ignoring extraneous visual information is a crucial step towards deploying robust and generalisable visuomotor policies. Project Page: tsagkas.github.io/afa
comment: This paper stems from a split of our earlier work "When Pre-trained Visual Representations Fall Short: Limitations in Visuo-Motor Robot Learning." While "The Temporal Trap" replaces the original and focuses on temporal entanglement, this companion study examines policy robustness and task-relevant visual cue selection
♻ ☆ Text to Robotic Assembly of Multi Component Objects using 3D Generative AI and Vision Language Models NeurIPS 2025
Advances in 3D generative AI have enabled the creation of physical objects from text prompts, but challenges remain in creating objects involving multiple component types. We present a pipeline that integrates 3D generative AI with vision-language models (VLMs) to enable the robotic assembly of multi-component objects from natural language. Our method leverages VLMs for zero-shot, multi-modal reasoning about geometry and functionality to decompose AI-generated meshes into multi-component 3D models using predefined structural and panel components. We demonstrate that a VLM is capable of determining which mesh regions need panel components in addition to structural components, based on the object's geometry and functionality. Evaluation across test objects shows that users preferred the VLM-generated assignments 90.6% of the time, compared to 59.4% for rule-based and 2.5% for random assignment. Lastly, the system allows users to refine component assignments through conversational feedback, enabling greater human control and agency in making physical objects with generative AI and robotics.
comment: Accepted to NeurIPS 2025, Conference on Neural Information Processing Systems, Creative AI Track
♻ ☆ Onboard Mission Replanning for Adaptive Cooperative Multi-Robot Systems
Cooperative autonomous robotic systems have significant potential for executing complex multi-task missions across space, air, ground, and maritime domains. But they commonly operate in remote, dynamic and hazardous environments, requiring rapid in-mission adaptation without reliance on fragile or slow communication links to centralised compute. Fast, on-board replanning algorithms are therefore needed to enhance resilience. Reinforcement Learning shows strong promise for efficiently solving mission planning tasks when formulated as Travelling Salesperson Problems (TSPs), but existing methods: 1) are unsuitable for replanning, where agents do not start at a single location; 2) do not allow cooperation between agents; 3) are unable to model tasks with variable durations; or 4) lack practical considerations for on-board deployment. Here we define the Cooperative Mission Replanning Problem as a novel variant of multiple TSP with adaptations to overcome these issues, and develop a new encoder/decoder-based model using Graph Attention Networks and Attention Models to solve it effectively and efficiently. Using a simple example of cooperative drones, we show our replanner consistently (90% of the time) maintains performance within 10% of the state-of-the-art LKH3 heuristic solver, whilst running 85-370 times faster on a Raspberry Pi. This work paves the way for increased resilience in autonomous multi-agent systems.
comment: 9 pages, 5 figures, 1 table
♻ ☆ UniGS: Unified Geometry-Aware Gaussian Splatting for Multimodal Rendering
In this paper, we propose UniGS, a unified map representation and differentiable framework for high-fidelity multimodal 3D reconstruction based on 3D Gaussian Splatting. Our framework integrates a CUDA-accelerated rasterization pipeline capable of rendering photo-realistic RGB images, geometrically accurate depth maps, consistent surface normals, and semantic logits simultaneously. We redesign the rasterization to render depth via differentiable ray-ellipsoid intersection rather than using Gaussian centers, enabling effective optimization of rotation and scale attribute through analytic depth gradients. Furthermore, we derive the analytic gradient formulation for surface normal rendering, ensuring geometric consistency among reconstructed 3D scenes. To improve computational and storage efficiency, we introduce a learnable attribute that enables differentiable pruning of Gaussians with minimal contribution during training. Quantitative and qualitative experiments demonstrate state-of-the-art reconstruction accuracy across all modalities, validating the efficacy of our geometry-aware paradigm. Source code and multimodal viewer will be available on GitHub.
♻ ☆ BeyondMimic: From Motion Tracking to Versatile Humanoid Control via Guided Diffusion
The human-like form of humanoid robots positions them uniquely to achieve the agility and versatility in motor skills that humans possess. Learning from human demonstrations offers a scalable approach to acquiring these capabilities. However, prior works either produce unnatural motions or rely on motion-specific tuning to achieve satisfactory naturalness. Furthermore, these methods are often motion- or goal-specific, lacking the versatility to compose diverse skills, especially when solving unseen tasks. We present BeyondMimic, a framework that scales to diverse motions and carries the versatility to compose them seamlessly in tackling unseen downstream tasks. At heart, a compact motion-tracking formulation enables mastering a wide range of radically agile behaviors, including aerial cartwheels, spin-kicks, flip-kicks, and sprinting, with a single setup and shared hyperparameters, all while achieving state-of-the-art human-like performance. Moving beyond the mere imitation of existing motions, we propose a unified latent diffusion model that empowers versatile goal specification, seamless task switching, and dynamic composition of these agile behaviors. Leveraging classifier guidance, a diffusion-specific technique for test-time optimization toward novel objectives, our model extends its capability to solve downstream tasks never encountered during training, including motion inpainting, joystick teleoperation, and obstacle avoidance, and transfers these skills zero-shot to real hardware. This work opens new frontiers for humanoid robots by pushing the limits of scalable human-like motor skill acquisition from human motion and advancing seamless motion synthesis that achieves generalization and versatility beyond training setups.
comment: Project page: https://beyondmimic.github.io/
♻ ☆ Feedback-MPPI: Fast Sampling-Based MPC via Rollout Differentiation -- Adios low-level controllers
Model Predictive Path Integral control is a powerful sampling-based approach suitable for complex robotic tasks due to its flexibility in handling nonlinear dynamics and non-convex costs. However, its applicability in real-time, highfrequency robotic control scenarios is limited by computational demands. This paper introduces Feedback-MPPI (F-MPPI), a novel framework that augments standard MPPI by computing local linear feedback gains derived from sensitivity analysis inspired by Riccati-based feedback used in gradient-based MPC. These gains allow for rapid closed-loop corrections around the current state without requiring full re-optimization at each timestep. We demonstrate the effectiveness of F-MPPI through simulations and real-world experiments on two robotic platforms: a quadrupedal robot performing dynamic locomotion on uneven terrain and a quadrotor executing aggressive maneuvers with onboard computation. Results illustrate that incorporating local feedback significantly improves control performance and stability, enabling robust, high-frequency operation suitable for complex robotic systems.
♻ ☆ Unlocking Efficient Vehicle Dynamics Modeling via Analytic World Models AAAI 2026
Differentiable simulators represent an environment's dynamics as a differentiable function. Within robotics and autonomous driving, this property is used in Analytic Policy Gradients (APG), which relies on backpropagating through the dynamics to train accurate policies for diverse tasks. Here we show that differentiable simulation also has an important role in world modeling, where it can impart predictive, prescriptive, and counterfactual capabilities to an agent. Specifically, we design three novel task setups in which the differentiable dynamics are combined within an end-to-end computation graph not with a policy, but a state predictor. This allows us to learn relative odometry, optimal planners, and optimal inverse states. We collectively call these predictors Analytic World Models (AWMs) and demonstrate how differentiable simulation enables their efficient, end-to-end learning. In autonomous driving scenarios, they have broad applicability and can augment an agent's decision-making beyond reactive control.
comment: Accepted at AAAI 2026
♻ ☆ Depth Matters: Multimodal RGB-D Perception for Robust Autonomous Agents
Autonomous agents that rely purely on perception to make real-time control decisions require efficient and robust architectures. In this work, we demonstrate that augmenting RGB input with depth information significantly enhances our agents' ability to predict steering commands compared to using RGB alone. We benchmark lightweight recurrent controllers that leverage the fused RGB-D features for sequential decision-making. To train our models, we collect high-quality data using a small-scale autonomous car controlled by an expert driver via a physical steering wheel, capturing varying levels of steering difficulty. Our models were successfully deployed on real hardware and inherently avoided dynamic and static obstacles, under out-of-distribution conditions. Specifically, our findings reveal that the early fusion of depth data results in a highly robust controller, which remains effective even with frame drops and increased noise levels, without compromising the network's focus on the task.
♻ ☆ ManipDreamer3D : Synthesizing Plausible Robotic Manipulation Video with Occupancy-aware 3D Trajectory
Data scarcity continues to be a major challenge in the field of robotic manipulation. Although diffusion models provide a promising solution for generating robotic manipulation videos, existing methods largely depend on 2D trajectories, which inherently face issues with 3D spatial ambiguity. In this work, we present a novel framework named ManipDreamer3D for generating plausible 3D-aware robotic manipulation videos from the input image and the text instruction. Our method combines 3D trajectory planning with a reconstructed 3D occupancy map created from a third-person perspective, along with a novel trajectory-to-video diffusion model. Specifically, ManipDreamer3D first reconstructs the 3D occupancy representation from the input image and then computes an optimized 3D end-effector trajectory, minimizing path length while avoiding collisions. Next, we employ a latent editing technique to create video sequences from the initial image latent and the optimized 3D trajectory. This process conditions our specially trained trajectory-to-video diffusion model to produce robotic pick-and-place videos. Our method generates robotic videos with autonomously planned plausible 3D trajectories, significantly reducing human intervention requirements. Experimental results demonstrate superior visual quality compared to existing methods.
comment: 7pages; 7figures; 3 tables
♻ ☆ Keep on Going: Learning Robust Humanoid Motion Skills via Selective Adversarial Training AAAI2026
Humanoid robots are expected to operate reliably over long horizons while executing versatile whole-body skills. Yet Reinforcement Learning (RL) motion policies typically lose stability under prolonged operation, sensor/actuator noise, and real world disturbances. In this work, we propose a Selective Adversarial Attack for Robust Training (SA2RT) to enhance the robustness of motion skills. The adversary is learned to identify and sparsely perturb the most vulnerable states and actions under an attack-budget constraint, thereby exposing true weakness without inducing conservative overfitting. The resulting non-zero sum, alternating optimization continually strengthens the motion policy against the strongest discovered attacks. We validate our approach on the Unitree G1 humanoid robot across perceptive locomotion and whole-body control tasks. Experimental results show that adversarially trained policies improve the terrain traversal success rate by 40%, reduce the trajectory tracking error by 32%, and maintain long horizon mobility and tracking performance. Together, these results demonstrate that selective adversarial attacks are an effective driver for learning robust, long horizon humanoid motion skills.
comment: 13 pages, 10 figures, AAAI2026
♻ ☆ Understanding while Exploring: Semantics-driven Active Mapping
Effective robotic autonomy in unknown environments demands proactive exploration and precise understanding of both geometry and semantics. In this paper, we propose ActiveSGM, an active semantic mapping framework designed to predict the informativeness of potential observations before execution. Built upon a 3D Gaussian Splatting (3DGS) mapping backbone, our approach employs semantic and geometric uncertainty quantification, coupled with a sparse semantic representation, to guide exploration. By enabling robots to strategically select the most beneficial viewpoints, ActiveSGM efficiently enhances mapping completeness, accuracy, and robustness to noisy semantic data, ultimately supporting more adaptive scene exploration. Our experiments on the Replica and Matterport3D datasets highlight the effectiveness of ActiveSGM in active semantic mapping tasks.
♻ ☆ GHOST: Solving the Traveling Salesman Problem on Graphs of Convex Sets AAAI-2026
We study GCS-TSP, a new variant of the Traveling Salesman Problem (TSP) defined over a Graph of Convex Sets (GCS) -- a powerful representation for trajectory planning that decomposes the configuration space into convex regions connected by a sparse graph. In this setting, edge costs are not fixed but depend on the specific trajectory selected through each convex region, making classical TSP methods inapplicable. We introduce GHOST, a hierarchical framework that optimally solves the GCS-TSP by combining combinatorial tour search with convex trajectory optimization. GHOST systematically explores tours on a complete graph induced by the GCS, using a novel abstract-path-unfolding algorithm to compute admissible lower bounds that guide best-first search at both the high level (over tours) and the low level (over feasible GCS paths realizing the tour). These bounds provide strong pruning power, enabling efficient search while avoiding unnecessary convex optimization calls. We prove that GHOST guarantees optimality and present a bounded-suboptimal variant for time-critical scenarios. Experiments show that GHOST is orders-of-magnitude faster than unified mixed-integer convex programming baselines for simple cases and uniquely handles complex trajectory planning problems involving high-order continuity constraints and an incomplete GCS.
comment: Accepted to AAAI-2026
♻ ☆ Special Unitary Parameterized Estimators of Rotation
This paper revisits the topic of rotation estimation through the lens of special unitary matrices. We begin by reformulating Wahba's problem using $SU(2)$ to derive multiple solutions that yield linear constraints on corresponding quaternion parameters. We then explore applications of these constraints by formulating efficient methods for related problems. Finally, from this theoretical foundation, we propose two novel continuous representations for learning rotations in neural networks. Extensive experiments validate the effectiveness of the proposed methods.
comment: 32 pages; new algebraic formula for QuadMobiusAlg; three new benchmark experiments
♻ ☆ VisualMimic: Visual Humanoid Loco-Manipulation via Motion Tracking and Generation
Humanoid loco-manipulation in unstructured environments demands tight integration of egocentric perception and whole-body control. However, existing approaches either depend on external motion capture systems or fail to generalize across diverse tasks. We introduce VisualMimic, a visual sim-to-real framework that unifies egocentric vision with hierarchical whole-body control for humanoid robots. VisualMimic combines a task-agnostic low-level keypoint tracker -- trained from human motion data via a teacher-student scheme -- with a task-specific high-level policy that generates keypoint commands from visual and proprioceptive input. To ensure stable training, we inject noise into the low-level policy and clip high-level actions using human motion statistics. VisualMimic enables zero-shot transfer of visuomotor policies trained in simulation to real humanoid robots, accomplishing a wide range of loco-manipulation tasks such as box lifting, pushing, football dribbling, and kicking. Beyond controlled laboratory settings, our policies also generalize robustly to outdoor environments. Videos are available at: https://visualmimic.github.io .
comment: Website: https://visualmimic.github.io
♻ ☆ ATOM-CBF: Adaptive Safe Perception-Based Control under Out-of-Distribution Measurements
Ensuring the safety of real-world systems is challenging, especially when they rely on learned perception modules to infer the system state from high-dimensional sensor data. These perception modules are vulnerable to epistemic uncertainty, often failing when encountering out-of-distribution (OoD) measurements not seen during training. To address this gap, we introduce ATOM-CBF (Adaptive-To-OoD-Measurement Control Barrier Function), a novel safe control framework that explicitly computes and adapts to the epistemic uncertainty from OoD measurements, without the need for ground-truth labels or information on distribution shifts. Our approach features two key components: (1) an OoD-aware adaptive perception error margin and (2) a safety filter that integrates this adaptive error margin, enabling the filter to adjust its conservatism in real-time. We provide empirical validation in simulations, demonstrating that ATOM-CBF maintains safety for an F1Tenth vehicle with LiDAR scans and a quadruped robot with RGB images.
♻ ☆ Decoupling Torque and Stiffness: A Unified Modeling and Control Framework for Antagonistic Artificial Muscles
Antagonistic soft actuators built from artificial muscles (PAMs, HASELs, DEAs) promise plant-level torque-stiffness decoupling, yet existing controllers for soft muscles struggle to maintain independent control through dynamic contact transients. We present a unified framework enabling independent torque and stiffness commands in real-time for diverse soft actuator types. Our unified force law captures diverse soft muscle physics in a single model with sub-ms computation, while our cascaded controller with analytical inverse dynamics maintains decoupling despite model errors and disturbances. Using co-contraction/bias coordinates, the controller independently modulates torque via bias and stiffness via co-contraction-replicating biological impedance strategies. Simulation-based validation through contact experiments demonstrates maintained independence: 200x faster settling on soft surfaces, 81% force reduction on rigid surfaces, and stable interaction vs 22-54% stability for fixed policies. This framework provides a foundation for enabling musculoskeletal antagonistic systems to execute adaptive impedance control for safe human-robot interaction.
♻ ☆ GELATO: Multi-Instruction Trajectory Reshaping via Geometry-Aware Multiagent-based Orchestration
We present GELATO -- the first language-driven trajectory reshaping framework to embed geometric environment awareness and multi-agent feedback orchestration to support multi-instruction in human-robot interaction scenarios. Unlike prior learning-based methods, our approach automatically registers scene objects as 6D geometric primitives via a VLM-assisted multi-view pipeline, and an LLM translates free-form multiple instructions into explicit, verifiable geometric constraints. These are integrated into a geometric-aware vector field optimization to adapt initial trajectories while preserving smoothness, feasibility, and clearance. We further introduce a multi-agent orchestration with observer-based refinement to handle multi-instruction inputs and interactions among objectives -- increasing success rate without retraining. Simulation and real-world experiments demonstrate our method achieves smoother, safer, and more interpretable trajectory modifications compared to state-of-the-art baselines.
♻ ☆ The Temporal Trap: Entanglement in Pre-Trained Visual Representations for Visuomotor Policy Learning
The integration of pre-trained visual representations (PVRs) has significantly advanced visuomotor policy learning. However, effectively leveraging these models remains a challenge. We identify temporal entanglement as a critical, inherent issue when using these time-invariant models in sequential decision-making tasks. This entanglement arises because PVRs, optimised for static image understanding, struggle to represent the temporal dependencies crucial for visuomotor control. In this work, we quantify the impact of temporal entanglement, demonstrating a strong correlation between a policy's success rate and the ability of its latent space to capture task-progression cues. Based on these insights, we propose a simple, yet effective disentanglement baseline designed to mitigate temporal entanglement. Our empirical results show that traditional methods aimed at enriching features with temporal components are insufficient on their own, highlighting the necessity of explicitly addressing temporal disentanglement for robust visuomotor policy learning.
comment: This submission replaces our earlier work "When Pre-trained Visual Representations Fall Short: Limitations in Visuo-Motor Robot Learning." The original paper was split into two studies; this version focuses on temporal entanglement in pre-trained visual representations. The companion paper is "Attentive Feature Aggregation."
♻ ☆ Optimal Modified Feedback Strategies in LQ Games under Control Imperfections
Game-theoretic approaches and Nash equilibrium have been widely applied across various engineering domains. However, practical challenges such as disturbances, delays, and actuator limitations can hinder the precise execution of Nash equilibrium strategies. This work investigates the impact of such implementation imperfections on game trajectories and players' costs in the context of a two-player finite-horizon linear quadratic (LQ) nonzero-sum game. Specifically, we analyze how small deviations by one player, measured or estimated at each stage, affect the state and cost function of the other player. To mitigate these effects, we propose an adjusted control policy that optimally compensates for the deviations under the stated information structure and can, under certain conditions, exploit them to improve performance. Rigorous mathematical analysis and proofs are provided, and the effectiveness of the proposed method is demonstrated through a representative numerical example.
comment: 6 pages, 2 figures, Preprint version of a paper submitted to ACC 2026
♻ ☆ A Humanoid Visual-Tactile-Action Dataset for Contact-Rich Manipulation
Contact-rich manipulation has become increasingly important in robot learning. However, previous studies on robot learning datasets have focused on rigid objects and underrepresented the diversity of pressure conditions for real-world manipulation. To address this gap, we present a humanoid visual-tactile-action dataset designed for manipulating deformable soft objects. The dataset was collected via teleoperation using a humanoid robot equipped with dexterous hands, capturing multi-modal interactions under varying pressure conditions. This work also motivates future research on models with advanced optimization strategies capable of effectively leveraging the complexity and diversity of tactile signals.
Robotics 52
☆ A Robust Task-Level Control Architecture for Learned Dynamical Systems
Dynamical system (DS)-based learning from demonstration (LfD) is a powerful tool for generating motion plans in the operation (`task') space of robotic systems. However, the realization of the generated motion plans is often compromised by a ''task-execution mismatch'', where unmodeled dynamics, persistent disturbances, and system latency cause the robot's actual task-space state to diverge from the desired motion trajectory. We propose a novel task-level robust control architecture, L1-augmented Dynamical Systems (L1-DS), that explicitly handles the task-execution mismatch in tracking a nominal motion plan generated by any DS-based LfD scheme. Our framework augments any DS-based LfD model with a nominal stabilizing controller and an L1 adaptive controller. Furthermore, we introduce a windowed Dynamic Time Warping (DTW)-based target selector, which enables the nominal stabilizing controller to handle temporal misalignment for improved phase-consistent tracking. We demonstrate the efficacy of our architecture on the LASA and IROS handwriting datasets.
☆ Baby Sophia: A Developmental Approach to Self-Exploration through Self-Touch and Hand Regard
Inspired by infant development, we propose a Reinforcement Learning (RL) framework for autonomous self-exploration in a robotic agent, Baby Sophia, using the BabyBench simulation environment. The agent learns self-touch and hand regard behaviors through intrinsic rewards that mimic an infant's curiosity-driven exploration of its own body. For self-touch, high-dimensional tactile inputs are transformed into compact, meaningful representations, enabling efficient learning. The agent then discovers new tactile contacts through intrinsic rewards and curriculum learning that encourage broad body coverage, balance, and generalization. For hand regard, visual features of the hands, such as skin-color and shape, are learned through motor babbling. Then, intrinsic rewards encourage the agent to perform novel hand motions, and follow its hands with its gaze. A curriculum learning setup from single-hand to dual-hand training allows the agent to reach complex visual-motor coordination. The results of this work demonstrate that purely curiosity-based signals, with no external supervision, can drive coordinated multimodal learning, imitating an infant's progression from random motor babbling to purposeful behaviors.
comment: 5 pages, 3 tables
☆ PALMS+: Modular Image-Based Floor Plan Localization Leveraging Depth Foundation Model WACV
Indoor localization in GPS-denied environments is crucial for applications like emergency response and assistive navigation. Vision-based methods such as PALMS enable infrastructure-free localization using only a floor plan and a stationary scan, but are limited by the short range of smartphone LiDAR and ambiguity in indoor layouts. We propose PALMS$+$, a modular, image-based system that addresses these challenges by reconstructing scale-aligned 3D point clouds from posed RGB images using a foundation monocular depth estimation model (Depth Pro), followed by geometric layout matching via convolution with the floor plan. PALMS$+$ outputs a posterior over the location and orientation, usable for direct or sequential localization. Evaluated on the Structured3D and a custom campus dataset consisting of 80 observations across four large campus buildings, PALMS$+$ outperforms PALMS and F3Loc in stationary localization accuracy -- without requiring any training. Furthermore, when integrated with a particle filter for sequential localization on 33 real-world trajectories, PALMS$+$ achieved lower localization errors compared to other methods, demonstrating robustness for camera-free tracking and its potential for infrastructure-free applications. Code and data are available at https://github.com/Head-inthe-Cloud/PALMS-Plane-based-Accessible-Indoor-Localization-Using-Mobile-Smartphones
comment: Accepted to IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2026, Application Track. Main paper: 8 pages, 5 figures. Supplementary material included
☆ A Shared-Autonomy Construction Robotic System for Overhead Works ICRA
We present the ongoing development of a robotic system for overhead work such as ceiling drilling. The hardware platform comprises a mobile base with a two-stage lift, on which a bimanual torso is mounted with a custom-designed drilling end effector and RGB-D cameras. To support teleoperation in dynamic environments with limited visibility, we use Gaussian splatting for online 3D reconstruction and introduce motion parameters to model moving objects. For safe operation around dynamic obstacles, we developed a neural configuration-space barrier approach for planning and control. Initial feasibility studies demonstrate the capability of the hardware in drilling, bolting, and anchoring, and the software in safe teleoperation in a dynamic environment.
comment: 4pages, 8 figures, ICRA construction workshop
☆ IFG: Internet-Scale Guidance for Functional Grasping Generation
Large Vision Models trained on internet-scale data have demonstrated strong capabilities in segmenting and semantically understanding object parts, even in cluttered, crowded scenes. However, while these models can direct a robot toward the general region of an object, they lack the geometric understanding required to precisely control dexterous robotic hands for 3D grasping. To overcome this, our key insight is to leverage simulation with a force-closure grasping generation pipeline that understands local geometries of the hand and object in the scene. Because this pipeline is slow and requires ground-truth observations, the resulting data is distilled into a diffusion model that operates in real-time on camera point clouds. By combining the global semantic understanding of internet-scale models with the geometric precision of a simulation-based locally-aware force-closure, \our achieves high-performance semantic grasping without any manually collected training data. For visualizations of this please visit our website at https://ifgrasping.github.io/
comment: Website at https://ifgrasping.github.io/
☆ SpatialActor: Exploring Disentangled Spatial Representations for Robust Robotic Manipulation AAAI 2026
Robotic manipulation requires precise spatial understanding to interact with objects in the real world. Point-based methods suffer from sparse sampling, leading to the loss of fine-grained semantics. Image-based methods typically feed RGB and depth into 2D backbones pre-trained on 3D auxiliary tasks, but their entangled semantics and geometry are sensitive to inherent depth noise in real-world that disrupts semantic understanding. Moreover, these methods focus on high-level geometry while overlooking low-level spatial cues essential for precise interaction. We propose SpatialActor, a disentangled framework for robust robotic manipulation that explicitly decouples semantics and geometry. The Semantic-guided Geometric Module adaptively fuses two complementary geometry from noisy depth and semantic-guided expert priors. Also, a Spatial Transformer leverages low-level spatial cues for accurate 2D-3D mapping and enables interaction among spatial features. We evaluate SpatialActor on multiple simulation and real-world scenarios across 50+ tasks. It achieves state-of-the-art performance with 87.4% on RLBench and improves by 13.9% to 19.4% under varying noisy conditions, showing strong robustness. Moreover, it significantly enhances few-shot generalization to new tasks and maintains robustness under various spatial perturbations. Project Page: https://shihao1895.github.io/SpatialActor
comment: AAAI 2026 Oral | Project Page: https://shihao1895.github.io/SpatialActor
☆ MAP-VLA: Memory-Augmented Prompting for Vision-Language-Action Model in Robotic Manipulation
Pre-trained Vision-Language-Action (VLA) models have achieved remarkable success in improving robustness and generalization for end-to-end robotic manipulation. However, these models struggle with long-horizon tasks due to their lack of memory and reliance solely on immediate sensory inputs. To address this limitation, we propose Memory-Augmented Prompting for Vision-Language-Action model (MAP-VLA), a novel framework that empowers pre-trained VLA models with demonstration-derived memory prompts to augment action generation for long-horizon robotic manipulation tasks. To achieve this, MAP-VLA first constructs a memory library from historical demonstrations, where each memory unit captures information about a specific stage of a task. These memory units are implemented as learnable soft prompts optimized through prompt tuning. Then, during real-time task execution, MAP-VLA retrieves relevant memory through trajectory similarity matching and dynamically integrates it into the VLA model for augmented action generation. Importantly, this prompt tuning and retrieval augmentation approach operates as a plug-and-play module for a frozen VLA model, offering a lightweight and flexible solution to improve task performance. Experimental results show that MAP-VLA delivers up to 7.0% absolute performance gains in the simulation benchmark and 25.0% on real robot evaluations for long-horizon tasks, surpassing the current state-of-the-art methods.
☆ WMPO: World Model-based Policy Optimization for Vision-Language-Action Models
Vision-Language-Action (VLA) models have shown strong potential for general-purpose robotic manipulation, but their reliance on expert demonstrations limits their ability to learn from failures and perform self-corrections. Reinforcement learning (RL) addresses these through self-improving interactions with the physical environment, but suffers from high sample complexity on real robots. We introduce World-Model-based Policy Optimization (WMPO), a principled framework for on-policy VLA RL without interacting with the real environment. In contrast to widely used latent world models, WMPO focuses on pixel-based predictions that align the "imagined" trajectories with the VLA features pretrained with web-scale images. Crucially, WMPO enables the policy to perform on-policy GRPO that provides stronger performance than the often-used off-policy methods. Extensive experiments in both simulation and real-robot settings demonstrate that WMPO (i) substantially improves sample efficiency, (ii) achieves stronger overall performance, (iii) exhibits emergent behaviors such as self-correction, and (iv) demonstrates robust generalization and lifelong learning capabilities.
comment: project website: https://wm-po.github.io
☆ SPIDER: Scalable Physics-Informed Dexterous Retargeting
Learning dexterous and agile policy for humanoid and dexterous hand control requires large-scale demonstrations, but collecting robot-specific data is prohibitively expensive. In contrast, abundant human motion data is readily available from motion capture, videos, and virtual reality, which could help address the data scarcity problem. However, due to the embodiment gap and missing dynamic information like force and torque, these demonstrations cannot be directly executed on robots. To bridge this gap, we propose Scalable Physics-Informed DExterous Retargeting (SPIDER), a physics-based retargeting framework to transform and augment kinematic-only human demonstrations to dynamically feasible robot trajectories at scale. Our key insight is that human demonstrations should provide global task structure and objective, while large-scale physics-based sampling with curriculum-style virtual contact guidance should refine trajectories to ensure dynamical feasibility and correct contact sequences. SPIDER scales across diverse 9 humanoid/dexterous hand embodiments and 6 datasets, improving success rates by 18% compared to standard sampling, while being 10X faster than reinforcement learning (RL) baselines, and enabling the generation of a 2.4M frames dynamic-feasible robot dataset for policy learning. As a universal physics-based retargeting method, SPIDER can work with diverse quality data and generate diverse and high-quality data to enable efficient policy learning with methods like RL.
comment: Project website: https://jc-bao.github.io/spider-project/
☆ ScaleADFG: Affordance-based Dexterous Functional Grasping via Scalable Dataset
Dexterous functional tool-use grasping is essential for effective robotic manipulation of tools. However, existing approaches face significant challenges in efficiently constructing large-scale datasets and ensuring generalizability to everyday object scales. These issues primarily arise from size mismatches between robotic and human hands, and the diversity in real-world object scales. To address these limitations, we propose the ScaleADFG framework, which consists of a fully automated dataset construction pipeline and a lightweight grasp generation network. Our dataset introduce an affordance-based algorithm to synthesize diverse tool-use grasp configurations without expert demonstrations, allowing flexible object-hand size ratios and enabling large robotic hands (compared to human hands) to grasp everyday objects effectively. Additionally, we leverage pre-trained models to generate extensive 3D assets and facilitate efficient retrieval of object affordances. Our dataset comprising five object categories, each containing over 1,000 unique shapes with 15 scale variations. After filtering, the dataset includes over 60,000 grasps for each 2 dexterous robotic hands. On top of this dataset, we train a lightweight, single-stage grasp generation network with a notably simple loss design, eliminating the need for post-refinement. This demonstrates the critical importance of large-scale datasets and multi-scale object variant for effective training. Extensive experiments in simulation and on real robot confirm that the ScaleADFG framework exhibits strong adaptability to objects of varying scales, enhancing functional grasp stability, diversity, and generalizability. Moreover, our network exhibits effective zero-shot transfer to real-world objects. Project page is available at https://sizhe-wang.github.io/ScaleADFG_webpage
comment: Accepted by IEEE Robotics and Automation Letters
☆ CoRL-MPPI: Enhancing MPPI With Learnable Behaviours For Efficient And Provably-Safe Multi-Robot Collision Avoidance
Decentralized collision avoidance remains a core challenge for scalable multi-robot systems. One of the promising approaches to tackle this problem is Model Predictive Path Integral (MPPI) -- a framework that is naturally suited to handle any robot motion model and provides strong theoretical guarantees. Still, in practice MPPI-based controller may provide suboptimal trajectories as its performance relies heavily on uninformed random sampling. In this work, we introduce CoRL-MPPI, a novel fusion of Cooperative Reinforcement Learning and MPPI to address this limitation. We train an action policy (approximated as deep neural network) in simulation that learns local cooperative collision avoidance behaviors. This learned policy is then embedded into the MPPI framework to guide its sampling distribution, biasing it towards more intelligent and cooperative actions. Notably, CoRL-MPPI preserves all the theoretical guarantees of regular MPPI. We evaluate our approach in dense, dynamic simulation environments against state-of-the-art baselines, including ORCA, BVC, and a multi-agent MPPI implementation. Our results demonstrate that CoRL-MPPI significantly improves navigation efficiency (measured by success rate and makespan) and safety, enabling agile and robust multi-robot navigation.
comment: The manuscript includes 9 pages, 4 figures, and 1 table
☆ UMIGen: A Unified Framework for Egocentric Point Cloud Generation and Cross-Embodiment Robotic Imitation Learning
Data-driven robotic learning faces an obvious dilemma: robust policies demand large-scale, high-quality demonstration data, yet collecting such data remains a major challenge owing to high operational costs, dependence on specialized hardware, and the limited spatial generalization capability of current methods. The Universal Manipulation Interface (UMI) relaxes the strict hardware requirements for data collection, but it is restricted to capturing only RGB images of a scene and omits the 3D geometric information on which many tasks rely. Inspired by DemoGen, we propose UMIGen, a unified framework that consists of two key components: (1) Cloud-UMI, a handheld data collection device that requires no visual SLAM and simultaneously records point cloud observation-action pairs; and (2) a visibility-aware optimization mechanism that extends the DemoGen pipeline to egocentric 3D observations by generating only points within the camera's field of view. These two components enable efficient data generation that aligns with real egocentric observations and can be directly transferred across different robot embodiments without any post-processing. Experiments in both simulated and real-world settings demonstrate that UMIGen supports strong cross-embodiment generalization and accelerates data collection in diverse manipulation tasks.
☆ Unveiling the Impact of Data and Model Scaling on High-Level Control for Humanoid Robots
Data scaling has long remained a critical bottleneck in robot learning. For humanoid robots, human videos and motion data are abundant and widely available, offering a free and large-scale data source. Besides, the semantics related to the motions enable modality alignment and high-level robot control learning. However, how to effectively mine raw video, extract robot-learnable representations, and leverage them for scalable learning remains an open problem. To address this, we introduce Humanoid-Union, a large-scale dataset generated through an autonomous pipeline, comprising over 260 hours of diverse, high-quality humanoid robot motion data with semantic annotations derived from human motion videos. The dataset can be further expanded via the same pipeline. Building on this data resource, we propose SCHUR, a scalable learning framework designed to explore the impact of large-scale data on high-level control in humanoid robots. Experimental results demonstrate that SCHUR achieves high robot motion generation quality and strong text-motion alignment under data and model scaling, with 37\% reconstruction improvement under MPJPE and 25\% alignment improvement under FID comparing with previous methods. Its effectiveness is further validated through deployment in real-world humanoid robot.
☆ HOTFLoc++: End-to-End Hierarchical LiDAR Place Recognition, Re-Ranking, and 6-DoF Metric Localisation in Forests
This article presents HOTFLoc++, an end-to-end framework for LiDAR place recognition, re-ranking, and 6-DoF metric localisation in forests. Leveraging an octree-based transformer, our approach extracts hierarchical local descriptors at multiple granularities to increase robustness to clutter, self-similarity, and viewpoint changes in challenging scenarios, including ground-to-ground and ground-to-aerial in forest and urban environments. We propose a learnable multi-scale geometric verification module to reduce re-ranking failures in the presence of degraded single-scale correspondences. Our coarse-to-fine registration approach achieves comparable or lower localisation errors to baselines, with runtime improvements of two orders of magnitude over RANSAC for dense point clouds. Experimental results on public datasets show the superiority of our approach compared to state-of-the-art methods, achieving an average Recall@1 of 90.7% on CS-Wild-Places: an improvement of 29.6 percentage points over baselines, while maintaining high performance on single-source benchmarks with an average Recall@1 of 91.7% and 96.0% on Wild-Places and MulRan, respectively. Our method achieves under 2 m and 5 degrees error for 97.2% of 6-DoF registration attempts, with our multi-scale re-ranking module reducing localisation errors by ~2$\times$ on average. The code will be available upon acceptance.
comment: 9 pages, 2 figures. Submitted to RA-L
☆ LODESTAR: Degeneracy-Aware LiDAR-Inertial Odometry with Adaptive Schmidt-Kalman Filter and Data Exploitation
LiDAR-inertial odometry (LIO) has been widely used in robotics due to its high accuracy. However, its performance degrades in degenerate environments, such as long corridors and high-altitude flights, where LiDAR measurements are imbalanced or sparse, leading to ill-posed state estimation. In this letter, we present LODESTAR, a novel LIO method that addresses these degeneracies through two key modules: degeneracy-aware adaptive Schmidt-Kalman filter (DA-ASKF) and degeneracy-aware data exploitation (DA-DE). DA-ASKF employs a sliding window to utilize past states and measurements as additional constraints. Specifically, it introduces degeneracy-aware sliding modes that adaptively classify states as active or fixed based on their degeneracy level. Using Schmidt-Kalman update, it partially optimizes active states while preserving fixed states. These fixed states influence the update of active states via their covariances, serving as reference anchors--akin to a lodestar. Additionally, DA-DE prunes less-informative measurements from active states and selectively exploits measurements from fixed states, based on their localizability contribution and the condition number of the Jacobian matrix. Consequently, DA-ASKF enables degeneracy-aware constrained optimization and mitigates measurement sparsity, while DA-DE addresses measurement imbalance. Experimental results show that LODESTAR outperforms existing LiDAR-based odometry methods and degeneracy-aware modules in terms of accuracy and robustness under various degenerate conditions.
comment: 8 pages, 5 figures, 6 tables, accepted for the publication in IEEE Robotics and Automation Letters
☆ RGMP: Recurrent Geometric-prior Multimodal Policy for Generalizable Humanoid Robot Manipulation
Humanoid robots exhibit significant potential in executing diverse human-level skills. However, current research predominantly relies on data-driven approaches that necessitate extensive training datasets to achieve robust multimodal decision-making capabilities and generalizable visuomotor control. These methods raise concerns due to the neglect of geometric reasoning in unseen scenarios and the inefficient modeling of robot-target relationships within the training data, resulting in significant waste of training resources. To address these limitations, we present the Recurrent Geometric-prior Multimodal Policy (RGMP), an end-to-end framework that unifies geometric-semantic skill reasoning with data-efficient visuomotor control. For perception capabilities, we propose the Geometric-prior Skill Selector, which infuses geometric inductive biases into a vision language model, producing adaptive skill sequences for unseen scenes with minimal spatial common sense tuning. To achieve data-efficient robotic motion synthesis, we introduce the Adaptive Recursive Gaussian Network, which parameterizes robot-object interactions as a compact hierarchy of Gaussian processes that recursively encode multi-scale spatial relationships, yielding dexterous, data-efficient motion synthesis even from sparse demonstrations. Evaluated on both our humanoid robot and desktop dual-arm robot, the RGMP framework achieves 87% task success in generalization tests and exhibits 5x greater data efficiency than the state-of-the-art model. This performance underscores its superior cross-domain generalization, enabled by geometric-semantic reasoning and recursive-Gaussion adaptation.
☆ Data Assessment for Embodied Intelligence
In embodied intelligence, datasets play a pivotal role, serving as both a knowledge repository and a conduit for information transfer. The two most critical attributes of a dataset are the amount of information it provides and how easily this information can be learned by models. However, the multimodal nature of embodied data makes evaluating these properties particularly challenging. Prior work has largely focused on diversity, typically counting tasks and scenes or evaluating isolated modalities, which fails to provide a comprehensive picture of dataset diversity. On the other hand, the learnability of datasets has received little attention and is usually assessed post-hoc through model training, an expensive, time-consuming process that also lacks interpretability, offering little guidance on how to improve a dataset. In this work, we address both challenges by introducing two principled, data-driven tools. First, we construct a unified multimodal representation for each data sample and, based on it, propose diversity entropy, a continuous measure that characterizes the amount of information contained in a dataset. Second, we introduce the first interpretable, data-driven algorithm to efficiently quantify dataset learnability without training, enabling researchers to assess a dataset's learnability immediately upon its release. We validate our algorithm on both simulated and real-world embodied datasets, demonstrating that it yields faithful, actionable insights that enable researchers to jointly improve diversity and learnability. We hope this work provides a foundation for designing higher-quality datasets that advance the development of embodied intelligence.
☆ Decoupling Torque and Stiffness: A Unified Modeling and Control Framework for Antagonistic Artificial Muscles
Antagonistic soft actuators built from artificial muscles (PAMs, HASELs, DEAs) promise plant-level torque-stiffness decoupling, yet existing controllers for soft muscles struggle to maintain independent control through dynamic contact transients. We present a unified framework enabling independent torque and stiffness commands in real-time for diverse soft actuator types. Our unified force law captures diverse soft muscle physics in a single model with sub-ms computation, while our cascaded controller with analytical inverse dynamics maintains decoupling despite model errors and disturbances. Using co-contraction/bias coordinates, the controller independently modulates torque via bias and stiffness via co-contraction-replicating biological impedance strategies. Simulation-based validation through contact experiments demonstrates maintained independence: 200x faster settling on soft surfaces, 81% force reduction on rigid surfaces, and stable interaction vs 22-54% stability for fixed policies. This framework provides a foundation for enabling musculoskeletal antagonistic systems to execute adaptive impedance control for safe human-robot interaction.
☆ APEX: Action Priors Enable Efficient Exploration for Robust Motion Tracking on Legged Robots
Learning natural, animal-like locomotion from demonstrations has become a core paradigm in legged robotics. Despite the recent advancements in motion tracking, most existing methods demand extensive tuning and rely on reference data during deployment, limiting adaptability. We present APEX (Action Priors enable Efficient Exploration), a plug-and-play extension to state-of-the-art motion tracking algorithms that eliminates any dependence on reference data during deployment, improves sample efficiency, and reduces parameter tuning effort. APEX integrates expert demonstrations directly into reinforcement learning (RL) by incorporating decaying action priors, which initially bias exploration toward expert demonstrations but gradually allow the policy to explore independently. This is combined with a multi-critic framework that balances task performance with motion style. Moreover, APEX enables a single policy to learn diverse motions and transfer reference-like styles across different terrains and velocities, while remaining robust to variations in reward design. We validate the effectiveness of our method through extensive experiments in both simulation and on a Unitree Go2 robot. By leveraging demonstrations to guide exploration during RL training, without imposing explicit bias toward them, APEX enables legged robots to learn with greater stability, efficiency, and generalization. We believe this approach paves the way for guidance-driven RL to boost natural skill acquisition in a wide array of robotic tasks, from locomotion to manipulation. Website and code: https://marmotlab.github.io/APEX/.
☆ D-AWSIM: Distributed Autonomous Driving Simulator for Dynamic Map Generation Framework
Autonomous driving systems have achieved significant advances, and full autonomy within defined operational design domains near practical deployment. Expanding these domains requires addressing safety assurance under diverse conditions. Information sharing through vehicle-to-vehicle and vehicle-to-infrastructure communication, enabled by a Dynamic Map platform built from vehicle and roadside sensor data, offers a promising solution. Real-world experiments with numerous infrastructure sensors incur high costs and regulatory challenges. Conventional single-host simulators lack the capacity for large-scale urban traffic scenarios. This paper proposes D-AWSIM, a distributed simulator that partitions its workload across multiple machines to support the simulation of extensive sensor deployment and dense traffic environments. A Dynamic Map generation framework on D-AWSIM enables researchers to explore information-sharing strategies without relying on physical testbeds. The evaluation shows that D-AWSIM increases throughput for vehicle count and LiDAR sensor processing substantially compared to a single-machine setup. Integration with Autoware demonstrates applicability for autonomous driving research.
comment: 9 pages. This version includes minor lstlisting configuration adjustments for successful compilation. No changes to content or layout. Originally published at Euromicro DSD 2025
☆ SMF-VO: Direct Ego-Motion Estimation via Sparse Motion Fields
Traditional Visual Odometry (VO) and Visual Inertial Odometry (VIO) methods rely on a 'pose-centric' paradigm, which computes absolute camera poses from the local map thus requires large-scale landmark maintenance and continuous map optimization. This approach is computationally expensive, limiting their real-time performance on resource-constrained devices. To overcome these limitations, we introduce Sparse Motion Field Visual Odometry (SMF-VO), a lightweight, 'motion-centric' framework. Our approach directly estimates instantaneous linear and angular velocity from sparse optical flow, bypassing the need for explicit pose estimation or expensive landmark tracking. We also employed a generalized 3D ray-based motion field formulation that works accurately with various camera models, including wide-field-of-view lenses. SMF-VO demonstrates superior efficiency and competitive accuracy on benchmark datasets, achieving over 100 FPS on a Raspberry Pi 5 using only a CPU. Our work establishes a scalable and efficient alternative to conventional methods, making it highly suitable for mobile robotics and wearable devices.
☆ Argus: Resilience-Oriented Safety Assurance Framework for End-to-End ADSs
End-to-end autonomous driving systems (ADSs), with their strong capabilities in environmental perception and generalizable driving decisions, are attracting growing attention from both academia and industry. However, once deployed on public roads, ADSs are inevitably exposed to diverse driving hazards that may compromise safety and degrade system performance. This raises a strong demand for resilience of ADSs, particularly the capability to continuously monitor driving hazards and adaptively respond to potential safety violations, which is crucial for maintaining robust driving behaviors in complex driving scenarios. To bridge this gap, we propose a runtime resilience-oriented framework, Argus, to mitigate the driving hazards, thus preventing potential safety violations and improving the driving performance of an ADS. Argus continuously monitors the trajectories generated by the ADS for potential hazards and, whenever the EGO vehicle is deemed unsafe, seamlessly takes control through a hazard mitigator. We integrate Argus with three state-of-the-art end-to-end ADSs, i.e., TCP, UniAD and VAD. Our evaluation has demonstrated that Argus effectively and efficiently enhances the resilience of ADSs, improving the driving score of the ADS by up to 150.30% on average, and preventing up to 64.38% of the violations, with little additional time overhead.
comment: The paper has been accepted by the 40th IEEE/ACM International Conference on Automated Software Engineering, ASE 2025
☆ A Quantum Tunneling and Bio-Phototactic Driven Enhanced Dwarf Mongoose Optimizer for UAV Trajectory Planning and Engineering Problem
With the widespread adoption of unmanned aerial vehicles (UAV), effective path planning has become increasingly important. Although traditional search methods have been extensively applied, metaheuristic algorithms have gained popularity due to their efficiency and problem-specific heuristics. However, challenges such as premature convergence and lack of solution diversity still hinder their performance in complex scenarios. To address these issues, this paper proposes an Enhanced Multi-Strategy Dwarf Mongoose Optimization (EDMO) algorithm, tailored for three-dimensional UAV trajectory planning in dynamic and obstacle-rich environments. EDMO integrates three novel strategies: (1) a Dynamic Quantum Tunneling Optimization Strategy (DQTOS) to enable particles to probabilistically escape local optima; (2) a Bio-phototactic Dynamic Focusing Search Strategy (BDFSS) inspired by microbial phototaxis for adaptive local refinement; and (3) an Orthogonal Lens Opposition-Based Learning (OLOBL) strategy to enhance global exploration through structured dimensional recombination. EDMO is benchmarked on 39 standard test functions from CEC2017 and CEC2020, outperforming 14 advanced algorithms in convergence speed, robustness, and optimization accuracy. Furthermore, real-world validations on UAV three-dimensional path planning and three engineering design tasks confirm its practical applicability and effectiveness in field robotics missions requiring intelligent, adaptive, and time-efficient planning.
☆ UniMM-V2X: MoE-Enhanced Multi-Level Fusion for End-to-End Cooperative Autonomous Driving
Autonomous driving holds transformative potential but remains fundamentally constrained by the limited perception and isolated decision-making with standalone intelligence. While recent multi-agent approaches introduce cooperation, they often focus merely on perception-level tasks, overlooking the alignment with downstream planning and control, or fall short in leveraging the full capacity of the recent emerging end-to-end autonomous driving. In this paper, we present UniMM-V2X, a novel end-to-end multi-agent framework that enables hierarchical cooperation across perception, prediction, and planning. At the core of our framework is a multi-level fusion strategy that unifies perception and prediction cooperation, allowing agents to share queries and reason cooperatively for consistent and safe decision-making. To adapt to diverse downstream tasks and further enhance the quality of multi-level fusion, we incorporate a Mixture-of-Experts (MoE) architecture to dynamically enhance the BEV representations. We further extend MoE into the decoder to better capture diverse motion patterns. Extensive experiments on the DAIR-V2X dataset demonstrate our approach achieves state-of-the-art (SOTA) performance with a 39.7% improvement in perception accuracy, a 7.2% reduction in prediction error, and a 33.2% improvement in planning performance compared with UniV2X, showcasing the strength of our MoE-enhanced multi-level cooperative paradigm.
☆ Think, Remember, Navigate: Zero-Shot Object-Goal Navigation with VLM-Powered Reasoning
While Vision-Language Models (VLMs) are set to transform robotic navigation, existing methods often underutilize their reasoning capabilities. To unlock the full potential of VLMs in robotics, we shift their role from passive observers to active strategists in the navigation process. Our framework outsources high-level planning to a VLM, which leverages its contextual understanding to guide a frontier-based exploration agent. This intelligent guidance is achieved through a trio of techniques: structured chain-of-thought prompting that elicits logical, step-by-step reasoning; dynamic inclusion of the agent's recent action history to prevent getting stuck in loops; and a novel capability that enables the VLM to interpret top-down obstacle maps alongside first-person views, thereby enhancing spatial awareness. When tested on challenging benchmarks like HM3D, Gibson, and MP3D, this method produces exceptionally direct and logical trajectories, marking a substantial improvement in navigation efficiency over existing approaches and charting a path toward more capable embodied agents.
☆ Expand Your SCOPE: Semantic Cognition over Potential-Based Exploration for Embodied Visual Navigation
Embodied visual navigation remains a challenging task, as agents must explore unknown environments with limited knowledge. Existing zero-shot studies have shown that incorporating memory mechanisms to support goal-directed behavior can improve long-horizon planning performance. However, they overlook visual frontier boundaries, which fundamentally dictate future trajectories and observations, and fall short of inferring the relationship between partial visual observations and navigation goals. In this paper, we propose Semantic Cognition Over Potential-based Exploration (SCOPE), a zero-shot framework that explicitly leverages frontier information to drive potential-based exploration, enabling more informed and goal-relevant decisions. SCOPE estimates exploration potential with a Vision-Language Model and organizes it into a spatio-temporal potential graph, capturing boundary dynamics to support long-horizon planning. In addition, SCOPE incorporates a self-reconsideration mechanism that revisits and refines prior decisions, enhancing reliability and reducing overconfident errors. Experimental results on two diverse embodied navigation tasks show that SCOPE outperforms state-of-the-art baselines by 4.6\% in accuracy. Further analysis demonstrates that its core components lead to improved calibration, stronger generalization, and higher decision quality.
☆ Diffusion Policies with Value-Conditional Optimization for Offline Reinforcement Learning IROS 2025
In offline reinforcement learning, value overestimation caused by out-of-distribution (OOD) actions significantly limits policy performance. Recently, diffusion models have been leveraged for their strong distribution-matching capabilities, enforcing conservatism through behavior policy constraints. However, existing methods often apply indiscriminate regularization to redundant actions in low-quality datasets, resulting in excessive conservatism and an imbalance between the expressiveness and efficiency of diffusion modeling. To address these issues, we propose DIffusion policies with Value-conditional Optimization (DIVO), a novel approach that leverages diffusion models to generate high-quality, broadly covered in-distribution state-action samples while facilitating efficient policy improvement. Specifically, DIVO introduces a binary-weighted mechanism that utilizes the advantage values of actions in the offline dataset to guide diffusion model training. This enables a more precise alignment with the dataset's distribution while selectively expanding the boundaries of high-advantage actions. During policy improvement, DIVO dynamically filters high-return-potential actions from the diffusion model, effectively guiding the learned policy toward better performance. This approach achieves a critical balance between conservatism and explorability in offline RL. We evaluate DIVO on the D4RL benchmark and compare it against state-of-the-art baselines. Empirical results demonstrate that DIVO achieves superior performance, delivering significant improvements in average returns across locomotion tasks and outperforming existing methods in the challenging AntMaze domain, where sparse rewards pose a major difficulty.
comment: IROS 2025
☆ A Shared Control Framework for Mobile Robots with Planning-Level Intention Prediction
In mobile robot shared control, effectively understanding human motion intention is critical for seamless human-robot collaboration. This paper presents a novel shared control framework featuring planning-level intention prediction. A path replanning algorithm is designed to adjust the robot's desired trajectory according to inferred human intentions. To represent future motion intentions, we introduce the concept of an intention domain, which serves as a constraint for path replanning. The intention-domain prediction and path replanning problems are jointly formulated as a Markov Decision Process and solved through deep reinforcement learning. In addition, a Voronoi-based human trajectory generation algorithm is developed, allowing the model to be trained entirely in simulation without human participation or demonstration data. Extensive simulations and real-world user studies demonstrate that the proposed method significantly reduces operator workload and enhances safety, without compromising task efficiency compared with existing assistive teleoperation approaches.
☆ MirrorLimb: Implementing hand pose acquisition and robot teleoperation based on RealMirror
In this work, we present a PICO-based robot remote operating framework that enables low-cost, real-time acquisition of hand motion and pose data, outperforming mainstream visual tracking and motion capture solutions in terms of cost-effectiveness. The framework is natively compatible with the RealMirror ecosystem, offering ready-to-use functionality for stable and precise robotic trajectory recording within the Isaac simulation environment, thereby facilitating the construction of Vision-Language-Action (VLA) datasets. Additionally, the system supports real-time teleoperation of a variety of end-effector-equipped robots, including dexterous hands and robotic grippers. This work aims to lower the technical barriers in the study of upper-limb robotic manipulation, thereby accelerating advancements in VLA-related research.
☆ XPRESS: X-Band Radar Place Recognition via Elliptical Scan Shaping
X-band radar serves as the primary sensor on maritime vessels, however, its application in autonomous navigation has been limited due to low sensor resolution and insufficient information content. To enable X-band radar-only autonomous navigation in maritime environments, this paper proposes a place recognition algorithm specifically tailored for X-band radar, incorporating an object density-based rule for efficient candidate selection and intentional degradation of radar detections to achieve robust retrieval performance. The proposed algorithm was evaluated on both public maritime radar datasets and our own collected dataset, and its performance was compared against state-of-the-art radar place recognition methods. An ablation study was conducted to assess the algorithm's performance sensitivity with respect to key parameters.
comment: 9 pages, 9 figures, Published in IEEE RA-L
☆ Semantic VLM Dataset for Safe Autonomous Driving
CAR-Scenes is a frame-level dataset for autonomous driving that enables training and evaluation of vision-language models (VLMs) for interpretable, scene-level understanding. We annotate 5,192 images drawn from Argoverse 1, Cityscapes, KITTI, and nuScenes using a 28-key category/sub-category knowledge base covering environment, road geometry, background-vehicle behavior, ego-vehicle behavior, vulnerable road users, sensor states, and a discrete severity scale (1-10), totaling 350+ leaf attributes. Labels are produced by a GPT-4o-assisted vision-language pipeline with human-in-the-loop verification; we release the exact prompts, post-processing rules, and per-field baseline model performance. CAR-Scenes also provides attribute co-occurrence graphs and JSONL records that support semantic retrieval, dataset triage, and risk-aware scenario mining across sources. To calibrate task difficulty, we include reproducible, non-benchmark baselines, notably a LoRA-tuned Qwen2-VL-2B with deterministic decoding, evaluated via scalar accuracy, micro-averaged F1 for list attributes, and severity MAE/RMSE on a fixed validation split. We publicly release the annotation and analysis scripts, including graph construction and evaluation scripts, to enable explainable, data-centric workflows for future intelligent vehicles. Dataset: https://github.com/Croquembouche/CAR-Scenes
comment: 8 pages, 6 figures, 7 tables
☆ DualVision ArthroNav: Investigating Opportunities to Enhance Localization and Reconstruction in Image-based Arthroscopy Navigation via External Cameras
Arthroscopic procedures can greatly benefit from navigation systems that enhance spatial awareness, depth perception, and field of view. However, existing optical tracking solutions impose strict workspace constraints and disrupt surgical workflow. Vision-based alternatives, though less invasive, often rely solely on the monocular arthroscope camera, making them prone to drift, scale ambiguity, and sensitivity to rapid motion or occlusion. We propose DualVision ArthroNav, a multi-camera arthroscopy navigation system that integrates an external camera rigidly mounted on the arthroscope. The external camera provides stable visual odometry and absolute localization, while the monocular arthroscope video enables dense scene reconstruction. By combining these complementary views, our system resolves the scale ambiguity and long-term drift inherent in monocular SLAM and ensures robust relocalization. Experiments demonstrate that our system effectively compensates for calibration errors, achieving an average absolute trajectory error of 1.09 mm. The reconstructed scenes reach an average target registration error of 2.16 mm, with high visual fidelity (SSIM = 0.69, PSNR = 22.19). These results indicate that our system provides a practical and cost-efficient solution for arthroscopic navigation, bridging the gap between optical tracking and purely vision-based systems, and paving the way toward clinically deployable, fully vision-based arthroscopic guidance.
♻ ☆ Stochastic Adaptive Estimation in Polynomial Curvature Shape State Space for Continuum Robots
In continuum robotics, real-time robust shape estimation is crucial for planning and control tasks that involve physical manipulation in complex environments. In this paper, we present a novel stochastic observer-based shape estimation framework designed specifically for continuum robots. The shape state space is uniquely represented by the modal coefficients of a polynomial, enabled by leveraging polynomial curvature kinematics (PCK) to describe the curvature distribution along the arclength. Our framework processes noisy measurements from limited discrete position, orientation, or pose sensors to estimate the shape state robustly. We derive a novel noise-weighted observability matrix, providing a detailed assessment of observability variations under diverse sensor configurations. To overcome the limitations of a single model, our observer employs the Interacting Multiple Model (IMM) method, coupled with Extended Kalman Filters (EKFs), to mix polynomial curvature models of different orders. The IMM approach, rooted in Markov processes, effectively manages multiple model scenarios by dynamically adapting to different polynomial orders based on real-time model probabilities. This adaptability is key to ensuring robust shape estimation of the robot's behaviors under various conditions. Our comprehensive analysis, supported by both simulation studies and experimental validations, confirms the robustness and accuracy of our methods.
comment: 20 pages. IEEE Transactions on Robotics - Accepted; this arXiv version corresponds to the final revision. Supplementary appendix provided as an ancillary PDF
♻ ☆ Improving Pre-Trained Vision-Language-Action Policies with Model-Based Search
Pre-trained vision-language-action (VLA) models offer a promising foundation for generalist robot policies, but often produce brittle behaviors or unsafe failures when deployed zero-shot in out-of-distribution scenarios. We present Vision-Language-Action Planning & Search (VLAPS) -- a novel framework and accompanying algorithms that embed model-based search into the inference procedure of pre-trained VLA policies to improve their performance on robotic tasks. Specifically, our method biases a modified Monte Carlo Tree Search (MCTS) algorithm -- run using a model of the target environment -- using action priors defined by the VLA policy. By using VLA-derived abstractions and priors in model-based search, VLAPS efficiently explores language-conditioned robotics tasks whose search spaces would otherwise be intractably large. Conversely, by integrating model-based search with the VLA policy's inference procedure, VLAPS yields behaviors that are more performant than those obtained by directly following the VLA policy's action predictions. VLAPS offers a principled framework to: i) control test-time compute in VLA models, ii) leverage a priori knowledge of the robotic environment, and iii) integrate established planning and reinforcement learning techniques into the VLA inference process. Across all experiments, VLAPS significantly outperforms VLA-only baselines on language-specified tasks that would otherwise be intractable for uninformed search algorithms, increasing success rates by as much as 67 percentage points.
♻ ☆ Towards Embodied Agentic AI: Review and Classification of LLM- and VLM-Driven Robot Autonomy and Interaction
Foundation models, including large language models (LLMs) and vision-language models (VLMs), have recently enabled novel approaches to robot autonomy and human-robot interfaces. In parallel, vision-language-action models (VLAs) or large behavior models (LBMs) are increasing the dexterity and capabilities of robotic systems. This survey paper reviews works that advance agentic applications and architectures, including initial efforts with GPT-style interfaces and more complex systems where AI agents function as coordinators, planners, perception actors, or generalist interfaces. Such agentic architectures allow robots to reason over natural language instructions, invoke APIs, plan task sequences, or assist in operations and diagnostics. In addition to peer-reviewed research, due to the fast-evolving nature of the field, we highlight and include community-driven projects, ROS packages, and industrial frameworks that show emerging trends. We propose a taxonomy for classifying model integration approaches and present a comparative analysis of the role that agents play in different solutions in today's literature.
♻ ☆ vS-Graphs: Tightly Coupling Visual SLAM and 3D Scene Graphs Exploiting Hierarchical Scene Understanding
Current Visual Simultaneous Localization and Mapping (VSLAM) systems often struggle to create maps that are both semantically rich and easily interpretable. While incorporating semantic scene knowledge aids in building richer maps with contextual associations among mapped objects, representing them in structured formats, such as scene graphs, has not been widely addressed, resulting in complex map comprehension and limited scalability. This paper introduces vS-Graphs, a novel real-time VSLAM framework that integrates vision-based scene understanding with map reconstruction and comprehensible graph-based representation. The framework infers structural elements (i.e., rooms and floors) from detected building components (i.e., walls and ground surfaces) and incorporates them into optimizable 3D scene graphs. This solution enhances the reconstructed map's semantic richness, comprehensibility, and localization accuracy. Extensive experiments on standard benchmarks and real-world datasets demonstrate that vS-Graphs achieves an average of 15.22% accuracy gain across all tested datasets compared to state-of-the-art VSLAM methods. Furthermore, the proposed framework achieves environment-driven semantic entity detection accuracy comparable to that of precise LiDAR-based frameworks, using only visual features. The code is publicly available at https://github.com/snt-arg/visual_sgraphs and is actively being improved. Moreover, a web page containing more media and evaluation outcomes is available on https://snt-arg.github.io/vsgraphs-results/.
comment: 19 pages, 10 figures, 5 tables
♻ ☆ KoopMotion: Learning Almost Divergence Free Koopman Flow Fields for Motion Planning
In this work, we propose a novel flow field-based motion planning method that drives a robot from any initial state to a desired reference trajectory such that it converges to the trajectory's end point. Despite demonstrated efficacy in using Koopman operator theory for modeling dynamical systems, Koopman does not inherently enforce convergence to desired trajectories nor to specified goals - a requirement when learning from demonstrations (LfD). We present KoopMotion which represents motion flow fields as dynamical systems, parameterized by Koopman Operators to mimic desired trajectories, and leverages the divergence properties of the learnt flow fields to obtain smooth motion fields that converge to a desired reference trajectory when a robot is placed away from the desired trajectory, and tracks the trajectory until the end point. To demonstrate the effectiveness of our approach, we show evaluations of KoopMotion on the LASA human handwriting dataset and a 3D manipulator end-effector trajectory dataset, including spectral analysis. We also perform experiments on a physical robot, verifying KoopMotion on a miniature autonomous surface vehicle operating in a non-static fluid flow environment. Our approach is highly sample efficient in both space and time, requiring only 3\% of the LASA dataset to generate dense motion plans. Additionally, KoopMotion provides a significant improvement over baselines when comparing metrics that measure spatial and temporal dynamics modeling efficacy. Code at: \href{https://alicekl.github.io/koop-motion/}{\color{blue}{https://alicekl.github.io/koop-motion}}.
comment: Revised with link to code. Accepted to CoRL 2025 (Conference on Robot Learning). 15 pages 11 figures
♻ ☆ Real Garment Benchmark (RGBench): A Comprehensive Benchmark for Robotic Garment Manipulation featuring a High-Fidelity Scalable Simulator AAAI
While there has been significant progress to use simulated data to learn robotic manipulation of rigid objects, applying its success to deformable objects has been hindered by the lack of both deformable object models and realistic non-rigid body simulators. In this paper, we present Real Garment Benchmark (RGBench), a comprehensive benchmark for robotic manipulation of garments. It features a diverse set of over 6000 garment mesh models, a new high-performance simulator, and a comprehensive protocol to evaluate garment simulation quality with carefully measured real garment dynamics. Our experiments demonstrate that our simulator outperforms currently available cloth simulators by a large margin, reducing simulation error by 20% while maintaining a speed of 3 times faster. We will publicly release RGBench to accelerate future research in robotic garment manipulation. Website: https://rgbench.github.io/
comment: 2026 AAAI Accept
♻ ☆ ViSA-Flow: Accelerating Robot Skill Learning via Large-Scale Video Semantic Action Flow
One of the central challenges preventing robots from acquiring complex manipulation skills is the prohibitive cost of collecting large-scale robot demonstrations. In contrast, humans are able to learn efficiently by watching others interact with their environment. To bridge this gap, we introduce semantic action flow as a core intermediate representation capturing the essential spatio-temporal manipulator-object interactions, invariant to superficial visual differences. We present ViSA-Flow, a framework that learns this representation self-supervised from unlabeled large-scale video data. First, a generative model is pre-trained on semantic action flows automatically extracted from large-scale human-object interaction video data, learning a robust prior over manipulation structure. Second, this prior is efficiently adapted to a target robot by fine-tuning on a small set of robot demonstrations processed through the same semantic abstraction pipeline. We demonstrate through extensive experiments on the CALVIN benchmark and real-world tasks that ViSA-Flow achieves state-of-the-art performance, particularly in low-data regimes, outperforming prior methods by effectively transferring knowledge from human video observation to robotic execution. Videos are available at https://visaflow-web.github.io/ViSAFLOW.
♻ ☆ SLAM&Render: A Benchmark for the Intersection Between Neural Rendering, Gaussian Splatting and SLAM
Models and methods originally developed for Novel View Synthesis and Scene Rendering, such as Neural Radiance Fields (NeRF) and Gaussian Splatting, are increasingly being adopted as representations in Simultaneous Localization and Mapping (SLAM). However, existing datasets fail to include the specific challenges of both fields, such as sequential operations and, in many settings, multi-modality in SLAM or generalization across viewpoints and illumination conditions in neural rendering. Additionally, the data are often collected using sensors which are handheld or mounted on drones or mobile robots, which complicates the accurate reproduction of sensor motions. To bridge these gaps, we introduce SLAM&Render, a novel dataset designed to benchmark methods in the intersection between SLAM, Novel View Rendering and Gaussian Splatting. Recorded with a robot manipulator, it uniquely includes 40 sequences with time-synchronized RGB-D images, IMU readings, robot kinematic data, and ground-truth pose streams. By releasing robot kinematic data, the dataset also enables the assessment of recent integrations of SLAM paradigms within robotic applications. The dataset features five setups with consumer and industrial objects under four controlled lighting conditions, each with separate training and test trajectories. All sequences are static with different levels of object rearrangements and occlusions. Our experimental results, obtained with several baselines from the literature, validate SLAM&Render as a relevant benchmark for this emerging research area.
comment: 9 pages, 8 figures, submitted to The International Journal of Robotics Research (IJRR)
♻ ☆ Primal-Dual iLQR for GPU-Accelerated Learning and Control in Legged Robots
This paper introduces a novel Model Predictive Control (MPC) implementation for legged robot locomotion that leverages GPU parallelization. Our approach enables both temporal and state-space parallelization by incorporating a parallel associative scan to solve the primal-dual Karush-Kuhn-Tucker (KKT) system. In this way, the optimal control problem is solved in $\mathcal{O}(n\log{N} + m)$ complexity, instead of $\mathcal{O}(N(n + m)^3)$, where $n$, $m$, and $N$ are the dimension of the system state, control vector, and the length of the prediction horizon. We demonstrate the advantages of this implementation over two state-of-the-art solvers (acados and crocoddyl), achieving up to a 60\% improvement in runtime for Whole Body Dynamics (WB)-MPC and a 700\% improvement for Single Rigid Body Dynamics (SRBD)-MPC when varying the prediction horizon length. The presented formulation scales efficiently with the problem state dimensions as well, enabling the definition of a centralized controller for up to 16 legged robots that can be computed in less than 25 ms. Furthermore, thanks to the JAX implementation, the solver supports large-scale parallelization across multiple environments, allowing the possibility of performing learning with the MPC in the loop directly in GPU.
♻ ☆ SafeFlow: Safe Robot Motion Planning with Flow Matching via Control Barrier Functions
Recent advances in generative modeling have led to promising results in robot motion planning, particularly through diffusion and flow matching (FM)-based models that capture complex, multimodal trajectory distributions. However, these methods are typically trained offline and remain limited when faced with new environments with constraints, often lacking explicit mechanisms to ensure safety during deployment. In this work, safe flow matching (SafeFlow), a motion planning framework, is proposed for trajectory generation that integrates flow matching with safety guarantees. SafeFlow leverages our proposed flow matching barrier functions (FMBF) to ensure the planned trajectories remain within safe regions across the entire planning horizon. Crucially, our approach enables training-free, real-time safety enforcement at test time, eliminating the need for retraining. We evaluate SafeFlow on a diverse set of tasks, including planar robot navigation and 7-DoF manipulation, demonstrating superior safety and planning performance compared to state-of-the-art generative planners. Comprehensive resources are available on the project website: https://safeflowmatching.github.io.
♻ ☆ Target Tracking via LiDAR-RADAR Sensor Fusion for Autonomous Racing
High Speed multi-vehicle Autonomous Racing will increase the safety and performance of road-going Autonomous Vehicles. Precise vehicle detection and dynamics estimation from a moving platform is a key requirement for planning and executing complex autonomous overtaking maneuvers. To address this requirement, we have developed a Latency-Aware EKF-based Multi Target Tracking algorithm fusing LiDAR and RADAR measurements. The algorithm explots the different sensor characteristics by explicitly integrating the Range Rate in the EKF Measurement Function, as well as a-priori knowledge of the racetrack during state prediction. It can handle Out-Of-Sequence Measurements via Reprocessing using a double State and Measurement Buffer, ensuring sensor delay compensation with no information loss. This algorithm has been implemented on Team PoliMOVE's autonomous racecar, and was proved experimentally by completing a number of fully autonomous overtaking maneuvers at speeds up to 275 km/h.
comment: IEEE Conference, 6 pages
♻ ☆ Strategic Coordination of Drones via Short-term Distributed Optimization and Long-term Reinforcement Learning
This paper addresses the problem of autonomous task allocation by a swarm of autonomous, interactive drones in large-scale, dynamic spatio-temporal environments. When each drone independently determines navigation, sensing, and recharging options to choose from such that system-wide sensing requirements are met, the collective decision-making becomes an NP-hard decentralized combinatorial optimization problem. Existing solutions face significant limitations: distributed optimization methods such as collective learning often lack long-term adaptability, while centralized deep reinforcement learning (DRL) suffers from high computational complexity, scalability and privacy concerns. To overcome these challenges, we propose a novel hybrid optimization approach that combines long-term DRL with short-term collective learning. In this approach, each drone uses DRL methods to proactively determine high-level strategies, such as flight direction and recharging behavior, while leveraging collective learning to coordinate short-term sensing and navigation tasks with other drones in a decentralized manner. Extensive experiments using datasets derived from realistic urban mobility demonstrate that the proposed solution outperforms standalone state-of-the-art collective learning and DRL approaches by $27.83\%$ and $23.17\%$ respectively. Our findings highlight the complementary strengths of short-term and long-term decision-making, enabling energy-efficient, accurate, and sustainable traffic monitoring through swarms of drones.
comment: 23 pages, 16 figures, accepted by Applied Soft Computing
♻ ☆ 4D Radar-Inertial Odometry based on Gaussian Modeling and Multi-Hypothesis Scan Matching
4D millimeter-wave (mmWave) radars are sensors that provide robustness against adverse weather conditions (rain, snow, fog, etc.), and as such they are increasingly used for odometry and SLAM (Simultaneous Location and Mapping). However, the noisy and sparse nature of the returned scan data proves to be a challenging obstacle for existing registration algorithms, especially those originally intended for more accurate sensors such as LiDAR. Following the success of 3D Gaussian Splatting for vision, in this paper we propose a summarized representation for radar scenes based on global simultaneous optimization of 3D Gaussians as opposed to voxel-based approaches, and leveraging its inherent Probability Density Function (PDF) for registration. Moreover, we propose tackling the problem of radar noise entirely within the scan matching process by optimizing multiple registration hypotheses for better protection against local optima of the PDF. Finally, following existing practice we implement an Extended Kalman Filter-based Radar-Inertial Odometry pipeline in order to evaluate the effectiveness of our system. Experiments using publicly available 4D radar datasets show that our Gaussian approach is comparable to existing registration algorithms, outperforming them in several sequences.
comment: Our code and results can be publicly accessed at: https://github.com/robotics-upo/gaussian-rio-cpp
♻ ☆ Gaussian-Process-based Adaptive Tracking Control with Dynamic Active Learning for Autonomous Ground Vehicles
This article proposes an active-learning-based adaptive trajectory tracking control method for autonomous ground vehicles to compensate for modeling errors and unmodeled dynamics. The nominal vehicle model is decoupled into lateral and longitudinal subsystems, which are augmented with online Gaussian Processes (GPs), using measurement data. The estimated mean functions of the GPs are used to construct a feedback compensator, which, together with an LPV state feedback controller designed for the nominal system, gives the adaptive control structure. To assist exploration of the dynamics, the paper proposes a new, dynamic active learning method to collect the most informative samples to accelerate the training process. To analyze the performance of the overall learning tool-chain provided controller, a novel iterative, counterexample-based algorithm is proposed for calculating the induced L2 gain between the reference trajectory and the tracking error. The analysis can be executed for a set of possible realizations of the to-be-controlled system, giving robust performance certificate of the learning method under variation of the vehicle dynamics. The efficiency of the proposed control approach is shown on a high-fidelity physics simulator and in real experiments using a 1/10 scale F1TENTH electric car.
comment: Submitted to IEEE Transactions on Control Systems Technology (revised)
♻ ☆ MLM: Learning Multi-task Loco-Manipulation Whole-Body Control for Quadruped Robot with Arm
Whole-body loco-manipulation for quadruped robots with arms remains a challenging problem, particularly in achieving multi-task control. To address this, we propose MLM, a reinforcement learning framework driven by both real-world and simulation data. It enables a six-DoF robotic arm-equipped quadruped robot to perform whole-body loco-manipulation for multiple tasks autonomously or under human teleoperation. To address the problem of balancing multiple tasks during the learning of loco-manipulation, we introduce a trajectory library with an adaptive, curriculum-based sampling mechanism. This approach allows the policy to efficiently leverage real-world collected trajectories for learning multi-task loco-manipulation. To address deployment scenarios with only historical observations and to enhance the performance of policy execution across tasks with different spatial ranges, we propose a Trajectory-Velocity Prediction policy network. It predicts unobservable future trajectories and velocities. By leveraging extensive simulation data and curriculum-based rewards, our controller achieves whole-body behaviors in simulation and zero-shot transfer to real-world deployment. Ablation studies in simulation verify the necessity and effectiveness of our approach, while real-world experiments on a Go2 robot with an Airbot robotic arm demonstrate the policy's good performance in multi-task execution.
♻ ☆ Evolutionary Policy Optimization
On-policy reinforcement learning (RL) algorithms are widely used for their strong asymptotic performance and training stability, but they struggle to scale with larger batch sizes, as additional parallel environments yield redundant data due to limited policy-induced diversity. In contrast, Evolutionary Algorithms (EAs) scale naturally and encourage exploration via randomized population-based search, but are often sample-inefficient. We propose Evolutionary Policy Optimization (EPO), a hybrid algorithm that combines the scalability and diversity of EAs with the performance and stability of policy gradients. EPO maintains a population of agents conditioned on latent variables, shares actor-critic network parameters for coherence and memory efficiency, and aggregates diverse experiences into a master agent. Across tasks in dexterous manipulation, legged locomotion, and classic control, EPO outperforms state-of-the-art baselines in sample efficiency, asymptotic performance, and scalability.
comment: Website at https://yifansu1301.github.io/EPO/
♻ ☆ Touch in the Wild: Learning Fine-Grained Manipulation with a Portable Visuo-Tactile Gripper
Handheld grippers are increasingly used to collect human demonstrations due to their ease of deployment and versatility. However, most existing designs lack tactile sensing, despite the critical role of tactile feedback in precise manipulation. We present a portable, lightweight gripper with integrated tactile sensors that enables synchronized collection of visual and tactile data in diverse, real-world, and in-the-wild settings. Building on this hardware, we propose a cross-modal representation learning framework that integrates visual and tactile signals while preserving their distinct characteristics. The learning procedure allows the emergence of interpretable representations that consistently focus on contacting regions relevant for physical interactions. When used for downstream manipulation tasks, these representations enable more efficient and effective policy learning, supporting precise robotic manipulation based on multimodal feedback. We validate our approach on fine-grained tasks such as test tube insertion and pipette-based fluid transfer, demonstrating improved accuracy and robustness under external disturbances. Our project page is available at https://binghao-huang.github.io/touch_in_the_wild/ .
comment: More videos can be found on our website:https://binghao-huang.github.io/touch_in_the_wild/
♻ ☆ Survey of Vision-Language-Action Models for Embodied Manipulation
Embodied intelligence systems, which enhance agent capabilities through continuous environment interactions, have garnered significant attention from both academia and industry. Vision-Language-Action models, inspired by advancements in large foundation models, serve as universal robotic control frameworks that substantially improve agent-environment interaction capabilities in embodied intelligence systems. This expansion has broadened application scenarios for embodied AI robots. This survey comprehensively reviews VLA models for embodied manipulation. Firstly, it chronicles the developmental trajectory of VLA architectures. Subsequently, we conduct a detailed analysis of current research across 5 critical dimensions: VLA model structures, training datasets, pre-training methods, post-training methods, and model evaluation. Finally, we synthesize key challenges in VLA development and real-world deployment, while outlining promising future research directions.
comment: in Chinese language
♻ ☆ LLM4AD: Large Language Models for Autonomous Driving -- Concept, Review, Benchmark, Experiments, and Future Trends
With the broader adoption and highly successful development of Large Language Models (LLMs), there has been growing interest and demand for applying LLMs to autonomous driving technology. Driven by their natural language understanding and reasoning capabilities, LLMs have the potential to enhance various aspects of autonomous driving systems, from perception and scene understanding to interactive decision-making. In this paper, we first introduce the novel concept of designing Large Language Models for Autonomous Driving (LLM4AD), followed by a review of existing LLM4AD studies. Then, we propose a comprehensive benchmark for evaluating the instruction-following and reasoning abilities of LLM4AD systems, which includes LaMPilot-Bench, CARLA Leaderboard 1.0 Benchmark in simulation and NuPlanQA for multi-view visual question answering. Furthermore, we conduct extensive real-world experiments on autonomous vehicle platforms, examining both on-cloud and on-edge LLM deployment for personalized decision-making and motion control. Next, we explore the future trends of integrating language diffusion models into autonomous driving, exemplified by the proposed ViLaD (Vision-Language Diffusion) framework. Finally, we discuss the main challenges of LLM4AD, including latency, deployment, security and privacy, safety, trust and transparency, and personalization.
♻ ☆ Robust Bayesian Scene Reconstruction with Retrieval-Augmented Priors for Precise Grasping and Planning
Constructing 3D representations of object geometry is critical for many robotics tasks, particularly manipulation problems. These representations must be built from potentially noisy partial observations. In this work, we focus on the problem of reconstructing a multi-object scene from a single RGBD image using a fixed camera. Traditional scene representation methods generally cannot infer the geometry of unobserved regions of the objects in the image. Attempts have been made to leverage deep learning to train on a dataset of known objects and representations, and then generalize to new observations. However, this can be brittle to noisy real-world observations and objects not contained in the dataset, and do not provide well-calibrated reconstruction confidences. We propose BRRP, a reconstruction method that leverages preexisting mesh datasets to build an informative prior during robust probabilistic reconstruction. We introduce the concept of a retrieval-augmented prior, where we retrieve relevant components of our prior distribution from a database of objects during inference. The resulting prior enables estimation of the geometry of occluded portions of the in-scene objects. Our method produces a distribution over object shape that can be used for reconstruction and measuring uncertainty. We evaluate our method in both simulated scenes and in the real world. We demonstrate the robustness of our method against deep learning-only approaches while being more accurate than a method without an informative prior. Through real-world experiments, we particularly highlight the capability of BRRP to enable successful dexterous manipulation in clutter.
Robotics 60
☆ Low-cost Multi-agent Fleet for Acoustic Cooperative Localization Research
Real-world underwater testing for multi-agent autonomy presents substantial financial and engineering challenges. In this work, we introduce the Configurable Underwater Group of Autonomous Robots (CoUGARs) as a low-cost, configurable autonomous-underwater-vehicle (AUV) platform for multi-agent autonomy research. The base design costs less than $3,000 USD (as of May 2025) and is based on commercially-available and 3D-printed parts, enabling quick customization for various sensor payloads and configurations. Our current expanded model is equipped with a doppler velocity log (DVL) and ultra-short-baseline (USBL) acoustic array/transducer to support research on acoustic-based cooperative localization. State estimation, navigation, and acoustic communications software has been developed and deployed using a containerized software stack and is tightly integrated with the HoloOcean simulator. The system was tested both in simulation and via in-situ field trials in Utah lakes and reservoirs.
☆ Dual-Arm Whole-Body Motion Planning: Leveraging Overlapping Kinematic Chains
High degree-of-freedom dual-arm robots are becoming increasingly common due to their morphology enabling them to operate effectively in human environments. However, motion planning in real-time within unknown, changing environments remains a challenge for such robots due to the high dimensionality of the configuration space and the complex collision-avoidance constraints that must be obeyed. In this work, we propose a novel way to alleviate the curse of dimensionality by leveraging the structure imposed by shared joints (e.g. torso joints) in a dual-arm robot. First, we build two dynamic roadmaps (DRM) for each kinematic chain (i.e. left arm + torso, right arm + torso) with specific structure induced by the shared joints. Then, we show that we can leverage this structure to efficiently search through the composition of the two roadmaps and largely sidestep the curse of dimensionality. Finally, we run several experiments in a real-world grocery store with this motion planner on a 19 DoF mobile manipulation robot executing a grocery fulfillment task, achieving 0.4s average planning times with 99.9% success rate across more than 2000 motion plans.
comment: Published in Humanoids 2025
☆ CENIC: Convex Error-controlled Numerical Integration for Contact
State-of-the-art robotics simulators operate in discrete time. This requires users to choose a time step, which is both critical and challenging: large steps can produce non-physical artifacts, while small steps force the simulation to run slowly. Continuous-time error-controlled integration avoids such issues by automatically adjusting the time step to achieve a desired accuracy. But existing error-controlled integrators struggle with the stiff dynamics of contact, and cannot meet the speed and scalability requirements of modern robotics workflows. We introduce CENIC, a new continuous-time integrator that brings together recent advances in convex time-stepping and error-controlled integration, inheriting benefits from both continuous integration and discrete time-stepping. CENIC runs at fast real-time rates comparable to discrete-time robotics simulators like MuJoCo, Drake and Isaac Sim, while also providing guarantees on accuracy and convergence.
comment: 18 pages with 19 figures. Submitted to IEEE Transactions on Robotics (T-RO). The supplemental video is available publicly at https://www.youtube.com/watch?v=9ZZ15MfCgtI
☆ Information-Driven Fault Detection and Identification for Multi-Agent Spacecraft Systems: Collaborative On-Orbit Inspection Mission
This work presents a global-to-local, task-aware fault detection and identification (FDI) framework for multi-spacecraft systems conducting collaborative inspection missions in low Earth orbit. The inspection task is represented by a global information-driven cost functional that integrates the sensor model, spacecraft poses, and mission-level information-gain objectives. This formulation links guidance, control, and FDI by using the same cost function to drive both global task allocation and local sensing or motion decisions. Fault detection is achieved through comparisons between expected and observed task metrics, while higher-order cost-gradient measures enable the identification of faults among sensors, actuators, and state estimators. An adaptive thresholding mechanism captures the time-varying inspection geometry and dynamic mission conditions. Simulation results for representative multi-spacecraft inspection scenarios demonstrate the reliability of fault localization and classification under uncertainty, providing a unified, information-driven foundation for resilient autonomous inspection architectures.
comment: AIAA Book Chapter (accepted)
☆ Intuitive Programming, Adaptive Task Planning, and Dynamic Role Allocation in Human-Robot Collaboration
Remarkable capabilities have been achieved by robotics and AI, mastering complex tasks and environments. Yet, humans often remain passive observers, fascinated but uncertain how to engage. Robots, in turn, cannot reach their full potential in human-populated environments without effectively modeling human states and intentions and adapting their behavior. To achieve a synergistic human-robot collaboration (HRC), a continuous information flow should be established: humans must intuitively communicate instructions, share expertise, and express needs. In parallel, robots must clearly convey their internal state and forthcoming actions to keep users informed, comfortable, and in control. This review identifies and connects key components enabling intuitive information exchange and skill transfer between humans and robots. We examine the full interaction pipeline: from the human-to-robot communication bridge translating multimodal inputs into robot-understandable representations, through adaptive planning and role allocation, to the control layer and feedback mechanisms to close the loop. Finally, we highlight trends and promising directions toward more adaptive, accessible HRC.
comment: Published in the Annual Review of Control, Robotics, and Autonomous Systems, Volume 9; copyright 2026 the author(s), CC BY 4.0, https://www.annualreviews.org
☆ Practical and Performant Enhancements for Maximization of Algebraic Connectivity ICRA 2026
Long-term state estimation over graphs remains challenging as current graph estimation methods scale poorly on large, long-term graphs. To address this, our work advances a current state-of-the-art graph sparsification algorithm, maximizing algebraic connectivity (MAC). MAC is a sparsification method that preserves estimation performance by maximizing the algebraic connectivity, a spectral graph property that is directly connected to the estimation error. Unfortunately, MAC remains computationally prohibitive for online use and requires users to manually pre-specify a connectivity-preserving edge set. Our contributions close these gaps along three complementary fronts: we develop a specialized solver for algebraic connectivity that yields an average 2x runtime speedup; we investigate advanced step size strategies for MAC's optimization procedure to enhance both convergence speed and solution quality; and we propose automatic schemes that guarantee graph connectivity without requiring manual specification of edges. Together, these contributions make MAC more scalable, reliable, and suitable for real-time estimation applications.
comment: Submitted to ICRA 2026
☆ SeFA-Policy: Fast and Accurate Visuomotor Policy Learning with Selective Flow Alignment
Developing efficient and accurate visuomotor policies poses a central challenge in robotic imitation learning. While recent rectified flow approaches have advanced visuomotor policy learning, they suffer from a key limitation: After iterative distillation, generated actions may deviate from the ground-truth actions corresponding to the current visual observation, leading to accumulated error as the reflow process repeats and unstable task execution. We present Selective Flow Alignment (SeFA), an efficient and accurate visuomotor policy learning framework. SeFA resolves this challenge by a selective flow alignment strategy, which leverages expert demonstrations to selectively correct generated actions and restore consistency with observations, while preserving multimodality. This design introduces a consistency correction mechanism that ensures generated actions remain observation-aligned without sacrificing the efficiency of one-step flow inference. Extensive experiments across both simulated and real-world manipulation tasks show that SeFA Policy surpasses state-of-the-art diffusion-based and flow-based policies, achieving superior accuracy and robustness while reducing inference latency by over 98%. By unifying rectified flow efficiency with observation-consistent action generation, SeFA provides a scalable and dependable solution for real-time visuomotor policy learning. Code is available on https://github.com/RongXueZoe/SeFA.
☆ Safe and Optimal Learning from Preferences via Weighted Temporal Logic with Applications in Robotics and Formula 1
Autonomous systems increasingly rely on human feedback to align their behavior, expressed as pairwise comparisons, rankings, or demonstrations. While existing methods can adapt behaviors, they often fail to guarantee safety in safety-critical domains. We propose a safety-guaranteed, optimal, and efficient approach to solve the learning problem from preferences, rankings, or demonstrations using Weighted Signal Temporal Logic (WSTL). WSTL learning problems, when implemented naively, lead to multi-linear constraints in the weights to be learned. By introducing structural pruning and log-transform procedures, we reduce the problem size and recast the problem as a Mixed-Integer Linear Program while preserving safety guarantees. Experiments on robotic navigation and real-world Formula 1 data demonstrate that the method effectively captures nuanced preferences and models complex task objectives.
comment: 8 pages, 2 figures
☆ A Supervised Autonomous Resection and Retraction Framework for Transurethral Enucleation of the Prostatic Median Lobe
Concentric tube robots (CTRs) offer dexterous motion at millimeter scales, enabling minimally invasive procedures through natural orifices. This work presents a coordinated model-based resection planner and learning-based retraction network that work together to enable semi-autonomous tissue resection using a dual-arm transurethral concentric tube robot (the Virtuoso). The resection planner operates directly on segmented CT volumes of prostate phantoms, automatically generating tool trajectories for a three-phase median lobe resection workflow: left/median trough resection, right/median trough resection, and median blunt dissection. The retraction network, PushCVAE, trained on surgeon demonstrations, generates retractions according to the procedural phase. The procedure is executed under Level-3 (supervised) autonomy on a prostate phantom composed of hydrogel materials that replicate the mechanical and cutting properties of tissue. As a feasibility study, we demonstrate that our combined autonomous system achieves a 97.1% resection of the targeted volume of the median lobe. Our study establishes a foundation for image-guided autonomy in transurethral robotic surgery and represents a first step toward fully automated minimally-invasive prostate enucleation.
comment: Submitted to International Symposium on Medial Robotics (ISMR) 2026. 7 pages, 8 figures
☆ Intuitive control of supernumerary robotic limbs through a tactile-encoded neural interface
Brain-computer interfaces (BCIs) promise to extend human movement capabilities by enabling direct neural control of supernumerary effectors, yet integrating augmented commands with multiple degrees of freedom without disrupting natural movement remains a key challenge. Here, we propose a tactile-encoded BCI that leverages sensory afferents through a novel tactile-evoked P300 paradigm, allowing intuitive and reliable decoding of supernumerary motor intentions even when superimposed with voluntary actions. The interface was evaluated in a multi-day experiment comprising of a single motor recognition task to validate baseline BCI performance and a dual task paradigm to assess the potential influence between the BCI and natural human movement. The brain interface achieved real-time and reliable decoding of four supernumerary degrees of freedom, with significant performance improvements after only three days of training. Importantly, after training, performance did not differ significantly between the single- and dual-BCI task conditions, and natural movement remained unimpaired during concurrent supernumerary control. Lastly, the interface was deployed in a movement augmentation task, demonstrating its ability to command two supernumerary robotic arms for functional assistance during bimanual tasks. These results establish a new neural interface paradigm for movement augmentation through stimulation of sensory afferents, expanding motor degrees of freedom without impairing natural movement.
☆ Probabilistic Safety Guarantee for Stochastic Control Systems Using Average Reward MDPs
Safety in stochastic control systems, which are subject to random noise with a known probability distribution, aims to compute policies that satisfy predefined operational constraints with high confidence throughout the uncertain evolution of the state variables. The unpredictable evolution of state variables poses a significant challenge for meeting predefined constraints using various control methods. To address this, we present a new algorithm that computes safe policies to determine the safety level across a finite state set. This algorithm reduces the safety objective to the standard average reward Markov Decision Process (MDP) objective. This reduction enables us to use standard techniques, such as linear programs, to compute and analyze safe policies. We validate the proposed method numerically on the Double Integrator and the Inverted Pendulum systems. Results indicate that the average-reward MDPs solution is more comprehensive, converges faster, and offers higher quality compared to the minimum discounted-reward solution.
comment: Submitted to the Learning for Dynamics & Control (L4DC) 2026 conference
☆ Human Motion Intent Inferencing in Teleoperation Through a SINDy Paradigm
Intent inferencing in teleoperation has been instrumental in aligning operator goals and coordinating actions with robotic partners. However, current intent inference methods often ignore subtle motion that can be strong indicators for a sudden change in intent. Specifically, we aim to tackle 1) if we can detect sudden jumps in operator trajectories, 2) how we appropriately use these sudden jump motions to infer an operator's goal state, and 3) how to incorporate these discontinuous and continuous dynamics to infer operator motion. Our framework, called Psychic, models these small indicative motions through a jump-drift-diffusion stochastic differential equation to cover discontinuous and continuous dynamics. Kramers-Moyal (KM) coefficients allow us to detect jumps with a trajectory which we pair with a statistical outlier detection algorithm to nominate goal transitions. Through identifying jumps, we can perform early detection of existing goals and discover undefined goals in unstructured scenarios. Our framework then applies a Sparse Identification of Nonlinear Dynamics (SINDy) model using KM coefficients with the goal transitions as a control input to infer an operator's motion behavior in unstructured scenarios. We demonstrate Psychic can produce probabilistic reachability sets and compare our strategy to a negative log-likelihood model fit. We perform a retrospective study on 600 operator trajectories in a hands-free teleoperation task to evaluate the efficacy of our opensource package, Psychic, in both offline and online learning.
comment: Open source software and video examples here: https://github.com/namwob44/Psychic
☆ A CODECO Case Study and Initial Validation for Edge Orchestration of Autonomous Mobile Robots
Autonomous Mobile Robots (AMRs) increasingly adopt containerized micro-services across the Edge-Cloud continuum. While Kubernetes is the de-facto orchestrator for such systems, its assumptions of stable networks, homogeneous resources, and ample compute capacity do not fully hold in mobile, resource-constrained robotic environments. This paper describes a case study on smart-manufacturing AMRs and performs an initial comparison between CODECO orchestration and standard Kubernetes using a controlled KinD environment. Metrics include pod deployment and deletion times, CPU and memory usage, and inter-pod data rates. The observed results indicate that CODECO offers reduced CPU consumption and more stable communication patterns, at the cost of modest memory overhead (10-15%) and slightly increased pod lifecycle latency due to secure overlay initialization.
☆ Learning Omnidirectional Locomotion for a Salamander-Like Quadruped Robot
Salamander-like quadruped robots are designed inspired by the skeletal structure of their biological counterparts. However, existing controllers cannot fully exploit these morphological features and largely rely on predefined gait patterns or joint trajectories, which prevents the generation of diverse and flexible locomotion and limits their applicability in real-world scenarios. In this paper, we propose a learning framework that enables the robot to acquire a diverse repertoire of omnidirectional gaits without reference motions. Each body part is controlled by a phase variable capable of forward and backward evolution, with a phase coverage reward to promote the exploration of the leg phase space. Additionally, morphological symmetry of the robot is incorporated via data augmentation, improving sample efficiency and enforcing both motion-level and task-level symmetry in learned behaviors. Extensive experiments show that the robot successfully acquires 22 omnidirectional gaits exhibiting both dynamic and symmetric movements, demonstrating the effectiveness of the proposed learning framework.
☆ Work-in-Progress: Function-as-Subtask API Replacing Publish/Subscribe for OS-Native DAG Scheduling
The Directed Acyclic Graph (DAG) task model for real-time scheduling finds its primary practical target in Robot Operating System 2 (ROS 2). However, ROS 2's publish/subscribe API leaves DAG precedence constraints unenforced: a callback may publish mid-execution, and multi-input callbacks let developers choose topic-matching policies. Thus preserving DAG semantics relies on conventions; once violated, the model collapses. We propose the Function-as-Subtask (FasS) API, which expresses each subtask as a function whose arguments/return values are the subtask's incoming/outgoing edges. By minimizing description freedom, DAG semantics is guaranteed at the API rather than by programmer discipline. We implement a DAG-native scheduler using FasS on a Rust-based experimental kernel and evaluate its semantic fidelity, and we outline design guidelines for applying FasS to Linux Linux sched_ext.
comment: 4 pages, 6 figures. Accepted for IEEE RTSS 2025; this is the author-accepted manuscript
☆ X-IONet: Cross-Platform Inertial Odometry Network with Dual-Stage Attention
Learning-based inertial odometry has achieved remarkable progress in pedestrian navigation. However, extending these methods to quadruped robots remains challenging due to their distinct and highly dynamic motion patterns. Models that perform well on pedestrian data often experience severe degradation when deployed on legged platforms. To tackle this challenge, we introduce X-IONet, a cross-platform inertial odometry framework that operates solely using a single Inertial Measurement Unit (IMU). X-IONet incorporates a rule-based expert selection module to classify motion platforms and route IMU sequences to platform-specific expert networks. The displacement prediction network features a dual-stage attention architecture that jointly models long-range temporal dependencies and inter-axis correlations, enabling accurate motion representation. It outputs both displacement and associated uncertainty, which are further fused through an Extended Kalman Filter (EKF) for robust state estimation. Extensive experiments on public pedestrian datasets and a self-collected quadruped robot dataset demonstrate that X-IONet achieves state-of-the-art performance, reducing Absolute Trajectory Error (ATE) by 14.3% and Relative Trajectory Error (RTE) by 11.4% on pedestrian data, and by 52.8% and 41.3% on quadruped robot data. These results highlight the effectiveness of X-IONet in advancing accurate and robust inertial navigation across both human and legged robot platforms.
☆ Real-Time Performance Analysis of Multi-Fidelity Residual Physics-Informed Neural Process-Based State Estimation for Robotic Systems
Various neural network architectures are used in many of the state-of-the-art approaches for real-time nonlinear state estimation. With the ever-increasing incorporation of these data-driven models into the estimation domain, model predictions with reliable margins of error are a requirement -- especially for safety-critical applications. This paper discusses the application of a novel real-time, data-driven estimation approach based on the multi-fidelity residual physics-informed neural process (MFR-PINP) toward the real-time state estimation of a robotic system. Specifically, we address the model-mismatch issue of selecting an accurate kinematic model by tasking the MFR-PINP to also learn the residuals between simple, low-fidelity predictions and complex, high-fidelity ground-truth dynamics. To account for model uncertainty present in a physical implementation, robust uncertainty guarantees from the split conformal (SC) prediction framework are modeled in the training and inference paradigms. We provide implementation details of our MFR-PINP-based estimator for a hybrid online learning setting to validate our model's usage in real-time applications. Experimental results of our approach's performance in comparison to the state-of-the-art variants of the Kalman filter (i.e. unscented Kalman filter and deep Kalman filter) in estimation scenarios showed promising results for the MFR-PINP model as a viable option in real-time estimation tasks.
comment: 8 pages, 5 figures
☆ Prioritizing Perception-Guided Self-Supervision: A New Paradigm for Causal Modeling in End-to-End Autonomous Driving NeurIPS 2025
End-to-end autonomous driving systems, predominantly trained through imitation learning, have demonstrated considerable effectiveness in leveraging large-scale expert driving data. Despite their success in open-loop evaluations, these systems often exhibit significant performance degradation in closed-loop scenarios due to causal confusion. This confusion is fundamentally exacerbated by the overreliance of the imitation learning paradigm on expert trajectories, which often contain unattributable noise and interfere with the modeling of causal relationships between environmental contexts and appropriate driving actions. To address this fundamental limitation, we propose Perception-Guided Self-Supervision (PGS) - a simple yet effective training paradigm that leverages perception outputs as the primary supervisory signals, explicitly modeling causal relationships in decision-making. The proposed framework aligns both the inputs and outputs of the decision-making module with perception results, such as lane centerlines and the predicted motions of surrounding agents, by introducing positive and negative self-supervision for the ego trajectory. This alignment is specifically designed to mitigate causal confusion arising from the inherent noise in expert trajectories. Equipped with perception-driven supervision, our method, built on a standard end-to-end architecture, achieves a Driving Score of 78.08 and a mean success rate of 48.64% on the challenging closed-loop Bench2Drive benchmark, significantly outperforming existing state-of-the-art methods, including those employing more complex network architectures and inference pipelines. These results underscore the effectiveness and robustness of the proposed PGS framework and point to a promising direction for addressing causal confusion and enhancing real-world generalization in autonomous driving.
comment: Accepted at NeurIPS 2025
☆ PerspAct: Enhancing LLM Situated Collaboration Skills through Perspective Taking and Active Vision
Recent advances in Large Language Models (LLMs) and multimodal foundation models have significantly broadened their application in robotics and collaborative systems. However, effective multi-agent interaction necessitates robust perspective-taking capabilities, enabling models to interpret both physical and epistemic viewpoints. Current training paradigms often neglect these interactive contexts, resulting in challenges when models must reason about the subjectivity of individual perspectives or navigate environments with multiple observers. This study evaluates whether explicitly incorporating diverse points of view using the ReAct framework, an approach that integrates reasoning and acting, can enhance an LLM's ability to understand and ground the demands of other agents. We extend the classic Director task by introducing active visual exploration across a suite of seven scenarios of increasing perspective-taking complexity. These scenarios are designed to challenge the agent's capacity to resolve referential ambiguity based on visual access and interaction, under varying state representations and prompting strategies, including ReAct-style reasoning. Our results demonstrate that explicit perspective cues, combined with active exploration strategies, significantly improve the model's interpretative accuracy and collaborative effectiveness. These findings highlight the potential of integrating active perception with perspective-taking mechanisms in advancing LLMs' application in robotics and multi-agent systems, setting a foundation for future research into adaptive and context-aware AI systems.
comment: Accepted at IAS19
☆ Dynamic Sparsity: Challenging Common Sparsity Assumptions for Learning World Models in Robotic Reinforcement Learning Benchmarks
The use of learned dynamics models, also known as world models, can improve the sample efficiency of reinforcement learning. Recent work suggests that the underlying causal graphs of such dynamics models are sparsely connected, with each of the future state variables depending only on a small subset of the current state variables, and that learning may therefore benefit from sparsity priors. Similarly, temporal sparsity, i.e. sparsely and abruptly changing local dynamics, has also been proposed as a useful inductive bias. In this work, we critically examine these assumptions by analyzing ground-truth dynamics from a set of robotic reinforcement learning environments in the MuJoCo Playground benchmark suite, aiming to determine whether the proposed notions of state and temporal sparsity actually tend to hold in typical reinforcement learning tasks. We study (i) whether the causal graphs of environment dynamics are sparse, (ii) whether such sparsity is state-dependent, and (iii) whether local system dynamics change sparsely. Our results indicate that global sparsity is rare, but instead the tasks show local, state-dependent sparsity in their dynamics and this sparsity exhibits distinct structures, appearing in temporally localized clusters (e.g., during contact events) and affecting specific subsets of state dimensions. These findings challenge common sparsity prior assumptions in dynamics learning, emphasizing the need for grounded inductive biases that reflect the state-dependent sparsity structure of real-world dynamics.
☆ Model Predictive Control via Probabilistic Inference: A Tutorial
Model Predictive Control (MPC) is a fundamental framework for optimizing robot behavior over a finite future horizon. While conventional numerical optimization methods can efficiently handle simple dynamics and cost structures, they often become intractable for the nonlinear or non-differentiable systems commonly encountered in robotics. This article provides a tutorial on probabilistic inference-based MPC, presenting a unified theoretical foundation and a comprehensive overview of representative methods. Probabilistic inference-based MPC approaches, such as Model Predictive Path Integral (MPPI) control, have gained significant attention by reinterpreting optimal control as a problem of probabilistic inference. Rather than relying on gradient-based numerical optimization, these methods estimate optimal control distributions through sampling-based techniques, accommodating arbitrary cost functions and dynamics. We first derive the optimal control distribution from the standard optimal control problem, elucidating its probabilistic interpretation and key characteristics. The widely used MPPI algorithm is then derived as a practical example, followed by discussions on prior and variational distribution design, tuning principles, and theoretical aspects. This article aims to serve as a systematic guide for researchers and practitioners seeking to understand, implement, and extend these methods in robotics and beyond.
comment: 15 pages, 7 figures
☆ AVOID-JACK: Avoidance of Jackknifing for Swarms of Long Heavy Articulated Vehicles
This paper presents a novel approach to avoiding jackknifing and mutual collisions in Heavy Articulated Vehicles (HAVs) by leveraging decentralized swarm intelligence. In contrast to typical swarm robotics research, our robots are elongated and exhibit complex kinematics, introducing unique challenges. Despite its relevance to real-world applications such as logistics automation, remote mining, airport baggage transport, and agricultural operations, this problem has not been addressed in the existing literature. To tackle this new class of swarm robotics problems, we propose a purely reaction-based, decentralized swarm intelligence strategy tailored to automate elongated, articulated vehicles. The method presented in this paper prioritizes jackknifing avoidance and establishes a foundation for mutual collision avoidance. We validate our approach through extensive simulation experiments and provide a comprehensive analysis of its performance. For the experiments with a single HAV, we observe that for 99.8% jackknifing was successfully avoided and that 86.7% and 83.4% reach their first and second goals, respectively. With two HAVs interacting, we observe 98.9%, 79.4%, and 65.1%, respectively, while 99.7% of the HAVs do not experience mutual collisions.
comment: 6+1 pages, 9 figures, accepted for publication in IEEE MRS 2025
☆ A Two-Layer Electrostatic Film Actuator with High Actuation Stress and Integrated Brake
Robotic systems driven by conventional motors often suffer from challenges such as large mass, complex control algorithms, and the need for additional braking mechanisms, which limit their applications in lightweight and compact robotic platforms. Electrostatic film actuators offer several advantages, including thinness, flexibility, lightweight construction, and high open-loop positioning accuracy. However, the actuation stress exhibited by conventional actuators in air still needs improvement, particularly for the widely used three-phase electrode design. To enhance the output performance of actuators, this paper presents a two-layer electrostatic film actuator with an integrated brake. By alternately distributing electrodes on both the top and bottom layers, a smaller effective electrode pitch is achieved under the same fabrication constraints, resulting in an actuation stress of approximately 241~N/m$^2$, representing a 90.5\% improvement over previous three-phase actuators operating in air. Furthermore, its integrated electrostatic adhesion mechanism enables load retention under braking mode. Several demonstrations, including a tug-of-war between a conventional single-layer actuator and the proposed two-layer actuator, a payload operation, a one-degree-of-freedom robotic arm, and a dual-mode gripper, were conducted to validate the actuator's advantageous capabilities in both actuation and braking modes.
☆ Effective Game-Theoretic Motion Planning via Nested Search
To facilitate effective, safe deployment in the real world, individual robots must reason about interactions with other agents, which often occur without explicit communication. Recent work has identified game theory, particularly the concept of Nash Equilibrium (NE), as a key enabler for behavior-aware decision-making. Yet, existing work falls short of fully unleashing the power of game-theoretic reasoning. Specifically, popular optimization-based methods require simplified robot dynamics and tend to get trapped in local minima due to convexification. Other works that rely on payoff matrices suffer from poor scalability due to the explicit enumeration of all possible trajectories. To bridge this gap, we introduce Game-Theoretic Nested Search (GTNS), a novel, scalable, and provably correct approach for computing NEs in general dynamical systems. GTNS efficiently searches the action space of all agents involved, while discarding trajectories that violate the NE constraint (no unilateral deviation) through an inner search over a lower-dimensional space. Our algorithm enables explicit selection among equilibria by utilizing a user-specified global objective, thereby capturing a rich set of realistic interactions. We demonstrate the approach on a variety of autonomous driving and racing scenarios where we achieve solutions in mere seconds on commodity hardware.
☆ USV Obstacles Detection and Tracking in Marine Environments
Developing a robust and effective obstacle detection and tracking system for Unmanned Surface Vehicle (USV) at marine environments is a challenging task. Research efforts have been made in this area during the past years by GRAAL lab at the university of Genova that resulted in a methodology for detecting and tracking obstacles on the image plane and, then, locating them in the 3D LiDAR point cloud. In this work, we continue on the developed system by, firstly, evaluating its performance on recently published marine datasets. Then, we integrate the different blocks of the system on ROS platform where we could test it in real-time on synchronized LiDAR and camera data collected in various marine conditions available in the MIT marine datasets. We present a thorough experimental analysis of the results obtained using two approaches; one that uses sensor fusion between the camera and LiDAR to detect and track the obstacles and the other uses only the LiDAR point cloud for the detection and tracking. In the end, we propose a hybrid approach that merges the advantages of both approaches to build an informative obstacles map of the surrounding environment to the USV.
☆ An Image-Based Path Planning Algorithm Using a UAV Equipped with Stereo Vision
This paper presents a novel image-based path planning algorithm that was developed using computer vision techniques, as well as its comparative analysis with well-known deterministic and probabilistic algorithms, namely A* and Probabilistic Road Map algorithm (PRM). The terrain depth has a significant impact on the calculated path safety. The craters and hills on the surface cannot be distinguished in a two-dimensional image. The proposed method uses a disparity map of the terrain that is generated by using a UAV. Several computer vision techniques, including edge, line and corner detection methods, as well as the stereo depth reconstruction technique, are applied to the captured images and the found disparity map is used to define candidate way-points of the trajectory. The initial and desired points are detected automatically using ArUco marker pose estimation and circle detection techniques. After presenting the mathematical model and vision techniques, the developed algorithm is compared with well-known algorithms on different virtual scenes created in the V-REP simulation program and a physical setup created in a laboratory environment. Results are promising and demonstrate effectiveness of the proposed algorithm.
☆ Local Path Planning with Dynamic Obstacle Avoidance in Unstructured Environments
Obstacle avoidance and path planning are essential for guiding unmanned ground vehicles (UGVs) through environments that are densely populated with dynamic obstacles. This paper develops a novel approach that combines tangentbased path planning and extrapolation methods to create a new decision-making algorithm for local path planning. In the assumed scenario, a UGV has a prior knowledge of its initial and target points within the dynamic environment. A global path has already been computed, and the robot is provided with waypoints along this path. As the UGV travels between these waypoints, the algorithm aims to avoid collisions with dynamic obstacles. These obstacles follow polynomial trajectories, with their initial positions randomized in the local map and velocities randomized between O and the allowable physical velocity limit of the robot, along with some random accelerations. The developed algorithm is tested in several scenarios where many dynamic obstacles move randomly in the environment. Simulation results show the effectiveness of the proposed local path planning strategy by gradually generating a collision free path which allows the robot to navigate safely between initial and the target locations.
☆ Dual-MPC Footstep Planning for Robust Quadruped Locomotion
In this paper, we propose a footstep planning strategy based on model predictive control (MPC) that enables robust regulation of body orientation against undesired body rotations by optimizing footstep placement. Model-based locomotion approaches typically adopt heuristic methods or planning based on the linear inverted pendulum model. These methods account for linear velocity in footstep planning, while excluding angular velocity, which leads to angular momentum being handled exclusively via ground reaction force (GRF). Footstep planning based on MPC that takes angular velocity into account recasts the angular momentum control problem as a dual-input approach that coordinates GRFs and footstep placement, instead of optimizing GRFs alone, thereby improving tracking performance. A mutual-feedback loop couples the footstep planner and the GRF MPC, with each using the other's solution to iteratively update footsteps and GRFs. The use of optimal solutions reduces body oscillation and enables extended stance and swing phases. The method is validated on a quadruped robot, demonstrating robust locomotion with reduced oscillations, longer stance and swing phases across various terrains.
comment: 9 pages, 9 figures
☆ Statistically Assuring Safety of Control Systems using Ensembles of Safety Filters and Conformal Prediction
Safety assurance is a fundamental requirement for deploying learning-enabled autonomous systems. Hamilton-Jacobi (HJ) reachability analysis is a fundamental method for formally verifying safety and generating safe controllers. However, computing the HJ value function that characterizes the backward reachable set (BRS) of a set of user-defined failure states is computationally expensive, especially for high-dimensional systems, motivating the use of reinforcement learning approaches to approximate the value function. Unfortunately, a learned value function and its corresponding safe policy are not guaranteed to be correct. The learned value function evaluated at a given state may not be equal to the actual safety return achieved by following the learned safe policy. To address this challenge, we introduce a conformal prediction-based (CP) framework that bounds such uncertainty. We leverage CP to provide probabilistic safety guarantees when using learned HJ value functions and policies to prevent control systems from reaching failure states. Specifically, we use CP to calibrate the switching between the unsafe nominal controller and the learned HJ-based safe policy and to derive safety guarantees under this switched policy. We also investigate using an ensemble of independently trained HJ value functions as a safety filter and compare this ensemble approach to using individual value functions alone.
☆ EquiMus: Energy-Equivalent Dynamic Modeling and Simulation of Musculoskeletal Robots Driven by Linear Elastic Actuators
Dynamic modeling and control are critical for unleashing soft robots' potential, yet remain challenging due to their complex constitutive behaviors and real-world operating conditions. Bio-inspired musculoskeletal robots, which integrate rigid skeletons with soft actuators, combine high load-bearing capacity with inherent flexibility. Although actuation dynamics have been studied through experimental methods and surrogate models, accurate and effective modeling and simulation remain a significant challenge, especially for large-scale hybrid rigid--soft robots with continuously distributed mass, kinematic loops, and diverse motion modes. To address these challenges, we propose EquiMus, an energy-equivalent dynamic modeling framework and MuJoCo-based simulation for musculoskeletal rigid--soft hybrid robots with linear elastic actuators. The equivalence and effectiveness of the proposed approach are validated and examined through both simulations and real-world experiments on a bionic robotic leg. EquiMus further demonstrates its utility for downstream tasks, including controller design and learning-based control strategies.
☆ A Comprehensive Experimental Characterization of Mechanical Layer Jamming Systems
Organisms in nature, such as Cephalopods and Pachyderms, exploit stiffness modulation to achieve amazing dexterity in the control of their appendages. In this paper, we explore the phenomenon of layer jamming, which is a popular stiffness modulation mechanism that provides an equivalent capability for soft robots. More specifically, we focus on mechanical layer jamming, which we realise through two-layer multi material structure with tooth-like protrusions. We identify key design parameters for mechanical layer jamming systems, including the ability to modulate stiffness, and perform a variety of comprehensive tests placing the specimens under bending and torsional loads to understand the influence of our selected design parameters (mainly tooth geometry) on the performance of the jammed structures. We note the ability of these structures to produce a peak change in stiffness of 5 times in bending and 3.2 times in torsion. We also measure the force required to separate the two jammed layers, an often ignored parameter in the study of jamming-induced stiffness change. This study aims to shed light on the principled design of mechanical layer jammed systems and guide researchers in the selection of appropriate designs for their specific application domains.
comment: 6 pages, 9 figures, RoboSoft 2026
☆ Occlusion-Aware Ground Target Search by a UAV in an Urban Environment
This paper considers the problem of searching for a point of interest (POI) moving along an urban road network with an uncrewed aerial vehicle (UAV). The UAV is modeled as a variable-speed Dubins vehicle with a line-of-sight sensor in an urban environment that may occlude the sensor's view of the POI. A search strategy is proposed that exploits a probabilistic visibility volume (VV) to plan its future motion with iterative deepening $A^\ast$. The probabilistic VV is a time-varying three-dimensional representation of the sensing constraints for a particular distribution of the POI's state. To find the path most likely to view the POI, the planner uses a heuristic to optimistically estimate the probability of viewing the POI over a time horizon. The probabilistic VV is max-pooled to create a variable-timestep planner that reduces the search space and balances long-term and short-term planning. The proposed path planning method is compared to prior work with a Monte-Carlo simulation and is shown to outperform the baseline methods in cluttered environments when the UAV's sensor has a higher false alarm probability.
comment: 18 pages, 18 figures, 5 tables
☆ SONIC: Supersizing Motion Tracking for Natural Humanoid Whole-Body Control
Despite the rise of billion-parameter foundation models trained across thousands of GPUs, similar scaling gains have not been shown for humanoid control. Current neural controllers for humanoids remain modest in size, target a limited behavior set, and are trained on a handful of GPUs over several days. We show that scaling up model capacity, data, and compute yields a generalist humanoid controller capable of creating natural and robust whole-body movements. Specifically, we posit motion tracking as a natural and scalable task for humanoid control, leverageing dense supervision from diverse motion-capture data to acquire human motion priors without manual reward engineering. We build a foundation model for motion tracking by scaling along three axes: network size (from 1.2M to 42M parameters), dataset volume (over 100M frames, 700 hours of high-quality motion data), and compute (9k GPU hours). Beyond demonstrating the benefits of scale, we show the practical utility of our model through two mechanisms: (1) a real-time universal kinematic planner that bridges motion tracking to downstream task execution, enabling natural and interactive control, and (2) a unified token space that supports various motion input interfaces, such as VR teleoperation devices, human videos, and vision-language-action (VLA) models, all using the same policy. Scaling motion tracking exhibits favorable properties: performance improves steadily with increased compute and data diversity, and learned representations generalize to unseen motions, establishing motion tracking at scale as a practical foundation for humanoid control.
comment: Project page: https://nvlabs.github.io/SONIC/
☆ Virtual Traffic Lights for Multi-Robot Navigation: Decentralized Planning with Centralized Conflict Resolution
We present a hybrid multi-robot coordination framework that combines decentralized path planning with centralized conflict resolution. In our approach, each robot autonomously plans its path and shares this information with a centralized node. The centralized system detects potential conflicts and allows only one of the conflicting robots to proceed at a time, instructing others to stop outside the conflicting area to avoid deadlocks. Unlike traditional centralized planning methods, our system does not dictate robot paths but instead provides stop commands, functioning as a virtual traffic light. In simulation experiments with multiple robots, our approach increased the success rate of robots reaching their goals while reducing deadlocks. Furthermore, we successfully validated the system in real-world experiments with two quadruped robots and separately with wheeled Duckiebots.
☆ Benchmarking Resilience and Sensitivity of Polyurethane-Based Vision-Based Tactile Sensors
Vision-based tactile sensors (VBTSs) are a promising technology for robots, providing them with dense signals that can be translated into an understanding of normal and shear load, contact region, texture classification, and more. However, existing VBTS tactile surfaces make use of silicone gels, which provide high sensitivity but easily deteriorate from loading and surface wear. We propose that polyurethane rubber, used for high-load applications like shoe soles, rubber wheels, and industrial gaskets, may provide improved physical gel resilience, potentially at the cost of sensitivity. To compare the resilience and sensitivity of silicone and polyurethane VBTS gels, we propose a series of standard evaluation benchmarking protocols. Our resilience tests assess sensor durability across normal loading, shear loading, and abrasion. For sensitivity, we introduce model-free assessments of force and spatial sensitivity to directly measure the physical capabilities of each gel without effects introduced from data and model quality. Finally, we include a bottle cap loosening and tightening demonstration as an example where polyurethane gels provide an advantage over their silicone counterparts.
☆ High-Altitude Balloon Station-Keeping with First Order Model Predictive Control
High-altitude balloons (HABs) are common in scientific research due to their wide range of applications and low cost. Because of their nonlinear, underactuated dynamics and the partial observability of wind fields, prior work has largely relied on model-free reinforcement learning (RL) methods to design near-optimal control schemes for station-keeping. These methods often compare only against hand-crafted heuristics, dismissing model-based approaches as impractical given the system complexity and uncertain wind forecasts. We revisit this assumption about the efficacy of model-based control for station-keeping by developing First-Order Model Predictive Control (FOMPC). By implementing the wind and balloon dynamics as differentiable functions in JAX, we enable gradient-based trajectory optimization for online planning. FOMPC outperforms a state-of-the-art RL policy, achieving a 24% improvement in time-within-radius (TWR) without requiring offline training, though at the cost of greater online computation per control step. Through systematic ablations of modeling assumptions and control factors, we show that online planning is effective across many configurations, including under simplified wind and dynamics models.
☆ Navigating the Wild: Pareto-Optimal Visual Decision-Making in Image Space
Navigating complex real-world environments requires semantic understanding and adaptive decision-making. Traditional reactive methods without maps often fail in cluttered settings, map-based approaches demand heavy mapping effort, and learning-based solutions rely on large datasets with limited generalization. To address these challenges, we present Pareto-Optimal Visual Navigation, a lightweight image-space framework that combines data-driven semantics, Pareto-optimal decision-making, and visual servoing for real-time navigation.
☆ ViPRA: Video Prediction for Robot Actions
Can we turn a video prediction model into a robot policy? Videos, including those of humans or teleoperated robots, capture rich physical interactions. However, most of them lack labeled actions, which limits their use in robot learning. We present Video Prediction for Robot Actions (ViPRA), a simple pretraining-finetuning framework that learns continuous robot control from these actionless videos. Instead of directly predicting actions, we train a video-language model to predict both future visual observations and motion-centric latent actions, which serve as intermediate representations of scene dynamics. We train these latent actions using perceptual losses and optical flow consistency to ensure they reflect physically grounded behavior. For downstream control, we introduce a chunked flow matching decoder that maps latent actions to robot-specific continuous action sequences, using only 100 to 200 teleoperated demonstrations. This approach avoids expensive action annotation, supports generalization across embodiments, and enables smooth, high-frequency continuous control upto 22 Hz via chunked action decoding. Unlike prior latent action works that treat pretraining as autoregressive policy learning, explicitly models both what changes and how. Our method outperforms strong baselines, with a 16% gain on the SIMPLER benchmark and a 13% improvement across real world manipulation tasks. We will release models and code at https://vipra-project.github.io
comment: Website: https://vipra-project.github.io
☆ Multistep Quasimetric Learning for Scalable Goal-conditioned Reinforcement Learning
Learning how to reach goals in an environment is a longstanding challenge in AI, yet reasoning over long horizons remains a challenge for modern methods. The key question is how to estimate the temporal distance between pairs of observations. While temporal difference methods leverage local updates to provide optimality guarantees, they often perform worse than Monte Carlo methods that perform global updates (e.g., with multi-step returns), which lack such guarantees. We show how these approaches can be integrated into a practical GCRL method that fits a quasimetric distance using a multistep Monte-Carlo return. We show our method outperforms existing GCRL methods on long-horizon simulated tasks with up to 4000 steps, even with visual observations. We also demonstrate that our method can enable stitching in the real-world robotic manipulation domain (Bridge setup). Our approach is the first end-to-end GCRL method that enables multistep stitching in this real-world manipulation domain from an unlabeled offline dataset of visual observations.
☆ LLM-GROP: Visually Grounded Robot Task and Motion Planning with Large Language Models
Task planning and motion planning are two of the most important problems in robotics, where task planning methods help robots achieve high-level goals and motion planning methods maintain low-level feasibility. Task and motion planning (TAMP) methods interleave the two processes of task planning and motion planning to ensure goal achievement and motion feasibility. Within the TAMP context, we are concerned with the mobile manipulation (MoMa) of multiple objects, where it is necessary to interleave actions for navigation and manipulation. In particular, we aim to compute where and how each object should be placed given underspecified goals, such as ``set up dinner table with a fork, knife and plate.'' We leverage the rich common sense knowledge from large language models (LLMs), e.g., about how tableware is organized, to facilitate both task-level and motion-level planning. In addition, we use computer vision methods to learn a strategy for selecting base positions to facilitate MoMa behaviors, where the base position corresponds to the robot's ``footprint'' and orientation in its operating space. Altogether, this article provides a principled TAMP framework for MoMa tasks that accounts for common sense about object rearrangement and is adaptive to novel situations that include many objects that need to be moved. We performed quantitative experiments in both real-world settings and simulated environments. We evaluated the success rate and efficiency in completing long-horizon object rearrangement tasks. While the robot completed 84.4\% real-world object rearrangement trials, subjective human evaluations indicated that the robot's performance is still lower than experienced human waiters.
☆ A QP Framework for Improving Data Collection: Quantifying Device-Controller Performance in Robot Teleoperation
Robot learning empowers the robot system with human brain-like intelligence to autonomously acquire and adapt skills through experience, enhancing flexibility and adaptability in various environments. Aimed at achieving a similar level of capability in large language models (LLMs) for embodied intelligence, data quality plays a crucial role in training a foundational model with diverse robot skills. In this study, we investigate the collection of data for manipulation tasks using teleoperation devices. Different devices yield varying effects when paired with corresponding controller strategies, including position-based inverse kinematics (IK) control, torque-based inverse dynamics (ID) control, and optimization-based compliance control. In this paper, we develop a teleoperation pipeline that is compatible with different teleoperation devices and manipulator controllers. Within the pipeline, we construct the optimal QP formulation with the dynamic nullspace and the impedance tracking as the novel optimal controller to achieve compliant pose tracking and singularity avoidance. Regarding the optimal controller, it adaptively adjusts the weights assignment depending on the robot joint manipulability that reflects the state of joint configuration for the pose tracking in the form of impedance control and singularity avoidance with nullspace tracking. Analysis of quantitative experimental results suggests the quality of the teleoperated trajectory data, including tracking error, occurrence of singularity, and the smoothness of the joints' trajectory, with different combinations of teleoperation interface and the motion controller.
☆ RoboTAG: End-to-end Robot Configuration Estimation via Topological Alignment Graph
Estimating robot pose from a monocular RGB image is a challenge in robotics and computer vision. Existing methods typically build networks on top of 2D visual backbones and depend heavily on labeled data for training, which is often scarce in real-world scenarios, causing a sim-to-real gap. Moreover, these approaches reduce the 3D-based problem to 2D domain, neglecting the 3D priors. To address these, we propose Robot Topological Alignment Graph (RoboTAG), which incorporates a 3D branch to inject 3D priors while enabling co-evolution of the 2D and 3D representations, alleviating the reliance on labels. Specifically, the RoboTAG consists of a 3D branch and a 2D branch, where nodes represent the states of the camera and robot system, and edges capture the dependencies between these variables or denote alignments between them. Closed loops are then defined in the graph, on which a consistency supervision across branches can be applied. This design allows us to utilize in-the-wild images as training data without annotations. Experimental results demonstrate that our method is effective across robot types, highlighting its potential to alleviate the data bottleneck in robotics.
♻ ☆ Act to See, See to Act: Diffusion-Driven Perception-Action Interplay for Adaptive Policies NeurIPS 2025
Existing imitation learning methods decouple perception and action, which overlooks the causal reciprocity between sensory representations and action execution that humans naturally leverage for adaptive behaviors. To bridge this gap, we introduce Action-Guided Diffusion Policy (DP-AG), a unified representation learning that explicitly models a dynamic interplay between perception and action through probabilistic latent dynamics. DP-AG encodes latent observations into a Gaussian posterior via variational inference and evolves them using an action-guided SDE, where the Vector-Jacobian Product (VJP) of the diffusion policy's noise predictions serves as a structured stochastic force driving latent updates. To promote bidirectional learning between perception and action, we introduce a cycle-consistent contrastive loss that organizes the gradient flow of the noise predictor into a coherent perception-action loop, enforcing mutually consistent transitions in both latent updates and action refinements. Theoretically, we derive a variational lower bound for the action-guided SDE, and prove that the contrastive objective enhances continuity in both latent and action trajectories. Empirically, DP-AG significantly outperforms state-of-the-art methods across simulation benchmarks and real-world UR5 manipulation tasks. As a result, our DP-AG offers a promising step toward bridging biological adaptability and artificial policy learning.
comment: 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ Trends in Motion Prediction Toward Deployable and Generalizable Autonomy: A Revisit and Perspectives
Motion prediction, recently popularized as world models, refers to the anticipation of future agent states or scene evolution, which is rooted in human cognition, bridging perception and decision-making. It enables intelligent systems, such as robots and self-driving cars, to act safely in dynamic, human-involved environments, and informs broader time-series reasoning challenges. With advances in methods, representations, and datasets, the field has seen rapid progress, reflected in quickly evolving benchmark results. Yet, when state-of-the-art methods are deployed in the real world, they often struggle to generalize to open-world conditions and fall short of deployment standards. This reveals a gap between research benchmarks, which are often idealized or ill-posed, and real-world complexity. To address this gap, this survey revisits the generalization and deployability of motion prediction models, with an emphasis on applications of robotics, autonomous driving, and human motion. We first offer a comprehensive taxonomy of motion prediction methods, covering representations, modeling strategies, application domains, and evaluation protocols. We then study two key challenges: (1) how to push motion prediction models to be deployable to realistic deployment standards, where motion prediction does not act in a vacuum, but functions as one module of closed-loop autonomy stacks - it takes input localization and perception, and informs downstream planning and control. 2) How to generalize motion prediction models from limited seen scenarios/datasets to the open-world settings. Throughout the paper, we highlight critical open challenges to guide future work, aiming to recalibrate the community's efforts, fostering progress that is not only measurable but also meaningful for real-world applications. The project webpage can be found here https://trends-in-motion-prediction-2025.github.io/.
comment: (Book) To Appear in Foundation and Trends in Robotics. 163 pages, 40 figures, 13 tables
♻ ☆ Mixed-Density Diffuser: Efficient Planning with Non-Uniform Temporal Resolution
Recent studies demonstrate that diffusion planners benefit from sparse-step planning over single-step planning. Training models to skip steps in their trajectories helps capture long-term dependencies without additional or memory computational cost. However, predicting excessively sparse plans degrades performance. We hypothesize this temporal density threshold is non-uniform across a temporal horizon and that certain parts of a planned trajectory should be more densely planned. We propose Mixed-Density Diffuser (MDD), a diffusion planner where the densities throughout the horizon are tunable hyperparameters. We show that MDD achieves a new SOTA across the Maze2D, Franka Kitchen, and Antmaze D4RL task domains.
comment: European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN) (under review)
♻ ☆ Certified Training with Branch-and-Bound for Lyapunov-stable Neural Control
We study the problem of learning verifiably Lyapunov-stable neural controllers that provably satisfy the Lyapunov asymptotic stability condition within a region-of-attraction (ROA). Unlike previous works that adopted counterexample-guided training without considering the computation of verification in training, we introduce Certified Training with Branch-and-Bound (CT-BaB), a new certified training framework that optimizes certified bounds, thereby reducing the discrepancy between training and test-time verification that also computes certified bounds. To achieve a relatively global guarantee on an entire input region-of-interest, we propose a training-time BaB technique that maintains a dynamic training dataset and adaptively splits hard input subregions into smaller ones, to tighten certified bounds and ease the training. Meanwhile, subregions created by the training-time BaB also inform test-time verification, for a more efficient training-aware verification. We demonstrate that CT-BaB yields verification-friendly models that can be more efficiently verified at test time while achieving stronger verifiable guarantees with larger ROA. On the largest output-feedback 2D Quadrotor system experimented, CT-BaB reduces verification time by over 11X relative to the previous state-of-the-art baseline while achieving 164X larger ROA.
comment: Preprint
♻ ☆ MOSAIC: A Skill-Centric Algorithmic Framework for Long-Horizon Manipulation Planning
Planning long-horizon manipulation motions using a set of predefined skills is a central challenge in robotics; solving it efficiently could enable general-purpose robots to tackle novel tasks by flexibly composing generic skills. Solutions to this problem lie in an infinitely vast space of parameterized skill sequences -- a space where common incremental methods struggle to find sequences that have non-obvious intermediate steps. Some approaches reason over lower-dimensional, symbolic spaces, which are more tractable to explore but may be brittle and are laborious to construct. In this work, we introduce MOSAIC, a skill-centric, multi-directional planning approach that targets these challenges by reasoning about which skills to employ and where they are most likely to succeed, by utilizing physics simulation to estimate skill execution outcomes. Specifically, MOSAIC employs two complementary skill families: Generators, which identify ``islands of competence'' where skills are demonstrably effective, and Connectors, which link these skill-trajectories by solving boundary value problems. By focusing planning efforts on regions of high competence, MOSAIC efficiently discovers physically-grounded solutions. We demonstrate its efficacy on complex long-horizon problems in both simulation and the real world, using a diverse set of skills including generative diffusion models, motion planning algorithms, and manipulation-specific models. Visit skill-mosaic.github.io for demonstrations and examples.
comment: Under review. Project page: https://skill-mosaic.github.io
♻ ☆ Military AI Needs Technically-Informed Regulation to Safeguard AI Research and its Applications NeurIPS 2025
Military weapon systems and command-and-control infrastructure augmented by artificial intelligence (AI) have seen rapid development and deployment in recent years. However, the sociotechnical impacts of AI on combat systems, military decision-making, and the norms of warfare have been understudied. We focus on a specific subset of lethal autonomous weapon systems (LAWS) that use AI for targeting or battlefield decisions. We refer to this subset as AI-powered lethal autonomous weapon systems (AI-LAWS) and argue that they introduce novel risks -- including unanticipated escalation, poor reliability in unfamiliar environments, and erosion of human oversight -- all of which threaten both military effectiveness and the openness of AI research. These risks cannot be addressed by high-level policy alone; effective regulation must be grounded in the technical behavior of AI models. We argue that AI researchers must be involved throughout the regulatory lifecycle. Thus, we propose a clear, behavior-based definition of AI-LAWS -- systems that introduce unique risks through their use of modern AI -- as a foundation for technically grounded regulation, given that existing frameworks do not distinguish them from conventional LAWS. Using this definition, we propose several technically-informed policy directions and invite greater participation from the AI research community in military AI policy discussions.
comment: Published at NeurIPS 2025, 10 pages, 2 tables, 1 figure
♻ ☆ Residual Rotation Correction using Tactile Equivariance
Visuotactile policy learning augments vision-only policies with tactile input, facilitating contact-rich manipulation. However, the high cost of tactile data collection makes sample efficiency the key requirement for developing visuotactile policies. We present EquiTac, a framework that exploits the inherent SO(2) symmetry of in-hand object rotation to improve sample efficiency and generalization for visuotactile policy learning. EquiTac first reconstructs surface normals from raw RGB inputs of vision-based tactile sensors, so rotations of the normal vector field correspond to in-hand object rotations. An SO(2)-equivariant network then predicts a residual rotation action that augments a base visuomotor policy at test time, enabling real-time rotation correction without additional reorientation demonstrations. On a real robot, EquiTac accurately achieves robust zero-shot generalization to unseen in-hand orientations with very few training samples, where baselines fail even with more training data. To our knowledge, this is the first tactile learning method to explicitly encode tactile equivariance for policy learning, yielding a lightweight, symmetry-aware module that improves reliability in contact-rich tasks.
comment: 8 pages
♻ ☆ Token Is All You Need: Cognitive Planning through Belief-Intent Co-Evolution
We challenge the long-standing assumption that exhaustive scene modeling is required for high-performance end-to-end autonomous driving (E2EAD). Inspired by cognitive science, we propose that effective planning arises not from reconstructing the world, but from the co-evolution of belief and intent within a minimal set of semantically rich tokens. Experiments on the nuPlan benchmark (720 scenarios, 11k+ samples) reveal three principles: (1) sparse intent tokens alone achieve 0.487 m ADE, demonstrating strong performance without future prediction; (2) conditioning trajectory decoding on predicted future tokens reduces ADE to 0.382 m, a 21.6% improvement, showing that performance emerges from cognitive planning; and (3) explicit reconstruction loss degrades performance, confirming that task-driven belief-intent co-evolution suffices under reliable perception inputs. Crucially, we observe the emergence of cognitive consistency: through prolonged training, the model spontaneously develops stable token dynamics that balance current perception (belief) and future goals (intent). This process, accompanied by "temporal fuzziness," enables robustness under uncertainty and continuous self-optimization. Our work establishes a new paradigm: intelligence lies not in pixel fidelity, but in the tokenized duality of belief and intent. By reframing planning as understanding rather than reaction, TIWM bridges the gap between world models and VLA systems, paving the way for foresightful agents that plan through imagination. Note: Numerical comparisons with methods reporting results on nuScenes are indicative only, as nuPlan presents a more challenging planning-focused evaluation.
comment: 7 pages, 3 figures. A paradigm shift from reconstructing the world to understanding it: planning through belief-intent co-evolution
♻ ☆ On the Surprising Effectiveness of Spectral Clipping in Learning Stable Linear and Latent-Linear Dynamical Systems
When learning stable linear dynamical systems from data, three important properties are desirable: i) predictive accuracy, ii) verifiable stability, and iii) computational efficiency. Unconstrained minimization of prediction errors leads to high accuracy and efficiency but cannot guarantee stability. Existing methods to enforce stability often preserve accuracy, but do so only at the cost of increased computation. In this work, we investigate if a seemingly-naive procedure can simultaneously offer all three desiderata. Specifically, we consider a post-hoc procedure in which we surgically manipulate the spectrum of the linear system after it was learned using unconstrained least squares. We call this approach spectral clipping (SC) as it involves eigen decomposition and subsequent reconstruction of the system matrix after any eigenvalues whose magnitude exceeds one have been clipped to one (without altering the eigenvectors). We also show that SC can be readily combined with Koopman operators to learn nonlinear dynamical systems that can generate stable predictions of nonlinear phenomena, such as those underlying complex dexterous manipulation skills involving multi-fingered robotic hands. Through comprehensive experiments involving two different applications and publicly available benchmark datasets, we show that this simple technique can efficiently learn highly-accurate predictive dynamics that are provably-stable. Notably, we find that SC can match or outperform strong baselines while being orders-of-magnitude faster. Finally, we find that SC can learn stable robot policies even when the training data includes unsuccessful or truncated demonstrations. Our code and datasets can be found at https://github.com/GT-STAR-Lab/spec_clip.
♻ ☆ Learning Vision-Based Neural Network Controllers with Semi-Probabilistic Safety Guarantees
Ensuring safety in autonomous systems with vision-based control remains a critical challenge due to the high dimensionality of image inputs and the fact that the relationship between true system state and its visual manifestation is unknown. Existing methods for learning-based control in such settings typically lack formal safety guarantees. To address this challenge, we introduce a novel semi-probabilistic verification framework that integrates reachability analysis with conditional generative networks and distribution-free tail bounds to enable efficient and scalable verification of vision-based neural network controllers. Next, we develop a gradient-based training approach that employs a novel safety loss function, safety-aware data-sampling strategy to efficiently select and store critical training examples, and curriculum learning, to efficiently synthesize safe controllers in the semi-probabilistic framework. Empirical evaluations in X-Plane 11 airplane landing simulation, CARLA-simulated autonomous lane following, F1Tenth vehicle lane following in a physical visually-rich miniature environment, and Airsim-simulated drone navigation and obstacle avoidance demonstrate the effectiveness of our method in achieving formal safety guarantees while maintaining strong nominal performance.
♻ ☆ Heuristic Adaptation of Potentially Misspecified Domain Support for Likelihood-Free Inference in Stochastic Dynamical Systems
In robotics, likelihood-free inference (LFI) can provide the domain distribution that adapts a learnt agent in a parametric set of deployment conditions. LFI assumes an arbitrary support for sampling, which remains constant as the initial generic prior is iteratively refined to more descriptive posteriors. However, a potentially misspecified support can lead to suboptimal, yet falsely certain, posteriors. To address this issue, we propose three heuristic LFI variants: EDGE, MODE, and CENTRE. Each interprets the posterior mode shift over inference steps in its own way and, when integrated into an LFI step, adapts the support alongside posterior inference. We first expose the support misspecification issue and evaluate our heuristics using stochastic dynamical benchmarks. We then evaluate the impact of heuristic support adaptation on parameter inference and policy learning for a dynamic deformable linear object (DLO) manipulation task. Inference results in a finer length and stiffness classification for a parametric set of DLOs. When the resulting posteriors are used as domain distributions for sim-based policy learning, they lead to more robust object-centric agent performance.
comment: 20 pages, 18 figures, algorithm lines cleveref fixed for pdflatex 2025
♻ ☆ Towards Adaptive Humanoid Control via Multi-Behavior Distillation and Reinforced Fine-Tuning
Humanoid robots are promising to learn a diverse set of human-like locomotion behaviors, including standing up, walking, running, and jumping. However, existing methods predominantly require training independent policies for each skill, yielding behavior-specific controllers that exhibit limited generalization and brittle performance when deployed on irregular terrains and in diverse situations. To address this challenge, we propose Adaptive Humanoid Control (AHC) that adopts a two-stage framework to learn an adaptive humanoid locomotion controller across different skills and terrains. Specifically, we first train several primary locomotion policies and perform a multi-behavior distillation process to obtain a basic multi-behavior controller, facilitating adaptive behavior switching based on the environment. Then, we perform reinforced fine-tuning by collecting online feedback in performing adaptive behaviors on more diverse terrains, enhancing terrain adaptability for the controller. We conduct experiments in both simulation and real-world experiments in Unitree G1 robots. The results show that our method exhibits strong adaptability across various situations and terrains. Project website: https://ahc-humanoid.github.io.
♻ ☆ Hestia: Voxel-Face-Aware Hierarchical Next-Best-View Acquisition for Efficient 3D Reconstruction
Advances in 3D reconstruction and novel view synthesis have enabled efficient and photorealistic rendering. However, images for reconstruction are still either largely manual or constrained by simple preplanned trajectories. To address this issue, recent works propose generalizable next-best-view planners that do not require online learning. Nevertheless, robustness and performance remain limited across various shapes. Hence, this study introduces Voxel-Face-Aware Hierarchical Next-Best-View Acquisition for Efficient 3D Reconstruction (Hestia), which addresses the shortcomings of the reinforcement learning-based generalizable approaches for five-degree-of-freedom viewpoint prediction. Hestia systematically improves the planners through four components: a more diverse dataset to promote robustness, a hierarchical structure to manage the high-dimensional continuous action search space, a close-greedy strategy to mitigate spurious correlations, and a face-aware design to avoid overlooking geometry. Experimental results show that Hestia achieves non-marginal improvements, with at least a 4% gain in coverage ratio, while reducing Chamfer Distance by 50% and maintaining real-time inference. In addition, Hestia outperforms prior methods by at least 12% in coverage ratio with a 5-image budget and remains robust to object placement variations. Finally, we demonstrate that Hestia, as a next-best-view planner, is feasible for the real-world application. Our project page is https://johnnylu305.github.io/hestia web.
♻ ☆ Tackling the Kidnapped Robot Problem via Sparse Feasible Hypothesis Sampling and Reliable Batched Multi-Stage Inference
This paper addresses the Kidnapped Robot Problem (KRP), a core localization challenge of relocalizing a robot in a known map without prior pose estimate when localization loss or at SLAM initialization. For this purpose, a passive 2-D global relocalization framework is proposed. It estimates the global pose efficiently and reliably from a single LiDAR scan and an occupancy grid map while the robot remains stationary, thereby enhancing the long-term autonomy of mobile robots. The proposed framework casts global relocalization as a non-convex problem and solves it via the multi-hypothesis scheme with batched multi-stage inference and early termination, balancing completeness and efficiency. The Rapidly-exploring Random Tree (RRT), under traversability constraints, asymptotically covers the reachable space to generate sparse, uniformly distributed feasible positional hypotheses, fundamentally reducing the sampling space. The hypotheses are preliminarily ordered by the proposed Scan Mean Absolute Difference (SMAD), a coarse beam-error level metric that facilitates the early termination by prioritizing high-likelihood candidates. The SMAD computation is optimized for non-panoramic scans. The Translation-Affinity Scan-to-Map Alignment Metric (TAM) is proposed for reliable orientation selection at hypothesized positions and accurate final pose evaluation to mitigate degradation in conventional likelihood-field metrics under translational uncertainty induced by sparse hypotheses, as well as non-panoramic LiDAR scan and environmental changes. Real-world experiments on a resource-constrained mobile robot with non-panoramic LiDAR scans show that the proposed framework achieves competitive performance in both global relocalization success rate and computational efficiency.
comment: 10 pages, 8 figures. This work has been submitted to the IEEE for possible publication
♻ ☆ Towards Affordance-Aware Robotic Dexterous Grasping with Human-like Priors AAAI 2026
A dexterous hand capable of generalizable grasping objects is fundamental for the development of general-purpose embodied AI. However, previous methods focus narrowly on low-level grasp stability metrics, neglecting affordance-aware positioning and human-like poses which are crucial for downstream manipulation. To address these limitations, we propose AffordDex, a novel framework with two-stage training that learns a universal grasping policy with an inherent understanding of both motion priors and object affordances. In the first stage, a trajectory imitator is pre-trained on a large corpus of human hand motions to instill a strong prior for natural movement. In the second stage, a residual module is trained to adapt these general human-like motions to specific object instances. This refinement is critically guided by two components: our Negative Affordance-aware Segmentation (NAA) module, which identifies functionally inappropriate contact regions, and a privileged teacher-student distillation process that ensures the final vision-based policy is highly successful. Extensive experiments demonstrate that AffordDex not only achieves universal dexterous grasping but also remains remarkably human-like in posture and functionally appropriate in contact location. As a result, AffordDex significantly outperforms state-of-the-art baselines across seen objects, unseen instances, and even entirely novel categories.
comment: AAAI 2026
♻ ☆ SCoTT: Strategic Chain-of-Thought Tasking for Wireless-Aware Robot Navigation in Digital Twins
Path planning under wireless performance constraints is a complex challenge in robot navigation. However, naively incorporating such constraints into classical planning algorithms often incurs prohibitive search costs. In this paper, we propose SCoTT, a wireless-aware path planning framework that leverages vision-language models (VLMs) to co-optimize average path gains and trajectory length using wireless heatmap images and ray-tracing data from a digital twin (DT). At the core of our framework is Strategic Chain-of-Thought Tasking (SCoTT), a novel prompting paradigm that decomposes the exhaustive search problem into structured subtasks, each solved via chain-of-thought prompting. To establish strong baselines, we compare classical A* and wireless-aware extensions of it, and derive DP-WA*, an optimal, iterative dynamic programming algorithm that incorporates all path gains and distance metrics from the DT, but at significant computational cost. In extensive experiments, we show that SCoTT achieves path gains within 2% of DP-WA* while consistently generating shorter trajectories. Moreover, SCoTT's intermediate outputs can be used to accelerate DP-WA* by reducing its search space, saving up to 62% in execution time. We validate our framework using four VLMs, demonstrating effectiveness across both large and small models, thus making it applicable to a wide range of compact models at low inference cost. We also show the practical viability of our approach by deploying SCoTT as a ROS node within Gazebo simulations. Finally, we discuss data acquisition pipelines, compute requirements, and deployment considerations for VLMs in 6G-enabled DTs, underscoring the potential of natural language interfaces for wireless-aware navigation in real-world applications.
♻ ☆ When To Seek Help: Trust-Aware Assistance Seeking in Human-Supervised Autonomy
Our goal is to model and experimentally assess trust evolution to predict future beliefs and behaviors of human-robot teams in dynamic environments. Research suggests that maintaining trust among team members in a human-robot team is vital for successful team performance. Research suggests that trust is a multi-dimensional and latent entity that relates to past experiences and future actions in a complex manner. Employing a human-robot collaborative task, we design an optimal assistance-seeking strategy for the robot using a POMDP framework. In the task, the human supervises an autonomous mobile manipulator collecting objects in an environment. The supervisor's task is to ensure that the robot safely executes its task. The robot can either choose to attempt to collect the object or seek human assistance. The human supervisor actively monitors the robot's activities, offering assistance upon request, and intervening if they perceive the robot may fail. In this setting, human trust is the hidden state, and the primary objective is to optimize team performance. We execute two sets of human-robot interaction experiments. The data from the first experiment are used to estimate POMDP parameters, which are used to compute an optimal assistance-seeking policy evaluated in the second experiment. The estimated POMDP parameters reveal that, for most participants, human intervention is more probable when trust is low, particularly in high-complexity tasks. Our estimates suggest that the robot's action of asking for assistance in high-complexity tasks can positively impact human trust. Our experimental results show that the proposed trust-aware policy is better than an optimal trust-agnostic policy. By comparing model estimates of human trust, obtained using only behavioral data, with the collected self-reported trust values, we show that model estimates are isomorphic to self-reported responses.
♻ ☆ EndoIR: Degradation-Agnostic All-in-One Endoscopic Image Restoration via Noise-Aware Routing Diffusion
Endoscopic images often suffer from diverse and co-occurring degradations such as low lighting, smoke, and bleeding, which obscure critical clinical details. Existing restoration methods are typically task-specific and often require prior knowledge of the degradation type, limiting their robustness in real-world clinical use. We propose EndoIR, an all-in-one, degradation-agnostic diffusion-based framework that restores multiple degradation types using a single model. EndoIR introduces a Dual-Domain Prompter that extracts joint spatial-frequency features, coupled with an adaptive embedding that encodes both shared and task-specific cues as conditioning for denoising. To mitigate feature confusion in conventional concatenation-based conditioning, we design a Dual-Stream Diffusion architecture that processes clean and degraded inputs separately, with a Rectified Fusion Block integrating them in a structured, degradation-aware manner. Furthermore, Noise-Aware Routing Block improves efficiency by dynamically selecting only noise-relevant features during denoising. Experiments on SegSTRONG-C and CEC datasets demonstrate that EndoIR achieves state-of-the-art performance across multiple degradation scenarios while using fewer parameters than strong baselines, and downstream segmentation experiments confirm its clinical utility.
Robotics 5
☆ Testing and Evaluation of Underwater Vehicle Using Hardware-In-The-Loop Simulation with HoloOcean
Testing marine robotics systems in controlled environments before field tests is challenging, especially when acoustic-based sensors and control surfaces only function properly underwater. Deploying robots in indoor tanks and pools often faces space constraints that complicate testing of control, navigation, and perception algorithms at scale. Recent developments of high-fidelity underwater simulation tools have the potential to address these problems. We demonstrate the utility of the recently released HoloOcean 2.0 simulator with improved dynamics for torpedo AUV vehicles and a new ROS 2 interface. We have successfully demonstrated a Hardware-in-the-Loop (HIL) and Software-in-the-Loop (SIL) setup for testing and evaluating a CougUV torpedo autonomous underwater vehicle (AUV) that was built and developed in our lab. With this HIL and SIL setup, simulations are run in HoloOcean using a ROS 2 bridge such that simulated sensor data is sent to the CougUV (mimicking sensor drivers) and control surface commands are sent back to the simulation, where vehicle dynamics and sensor data are calculated. We compare our simulated results to real-world field trial results.
comment: Published in IEEE/MTS OCEANS Conference proceedings 2025 Great Lakes
☆ Time-Aware Policy Learning for Adaptive and Punctual Robot Control
Temporal awareness underlies intelligent behavior in both animals and humans, guiding how actions are sequenced, paced, and adapted to changing goals and environments. Yet most robot learning algorithms remain blind to time. We introduce time-aware policy learning, a reinforcement learning framework that enables robots to explicitly perceive and reason with time as a first-class variable. The framework augments conventional reinforcement policies with two complementary temporal signals, the remaining time and a time ratio, which allow a single policy to modulate its behavior continuously from rapid and dynamic to cautious and precise execution. By jointly optimizing punctuality and stability, the robot learns to balance efficiency, robustness, resiliency, and punctuality without re-training or reward adjustment. Across diverse manipulation domains from long-horizon pick and place, to granular-media pouring, articulated-object handling, and multi-agent object delivery, the time-aware policy produces adaptive behaviors that outperform standard reinforcement learning baselines by up to 48% in efficiency, 8 times more robust in sim-to-real transfer, and 90% in acoustic quietness while maintaining near-perfect success rates. Explicit temporal reasoning further enables real-time human-in-the-loop control and multi-agent coordination, allowing robots to recover from disturbances, re-synchronize after delays, and align motion tempo with human intent. By treating time not as a constraint but as a controllable dimension of behavior, time-aware policy learning provides a unified foundation for efficient, robust, resilient, and human-aligned robot autonomy.
☆ CAVER: Curious Audiovisual Exploring Robot
Multimodal audiovisual perception can enable new avenues for robotic manipulation, from better material classification to the imitation of demonstrations for which only audio signals are available (e.g., playing a tune by ear). However, to unlock such multimodal potential, robots need to learn the correlations between an object's visual appearance and the sound it generates when they interact with it. Such an active sensorimotor experience requires new interaction capabilities, representations, and exploration methods to guide the robot in efficiently building increasingly rich audiovisual knowledge. In this work, we present CAVER, a novel robot that builds and utilizes rich audiovisual representations of objects. CAVER includes three novel contributions: 1) a novel 3D printed end-effector, attachable to parallel grippers, that excites objects' audio responses, 2) an audiovisual representation that combines local and global appearance information with sound features, and 3) an exploration algorithm that uses and builds the audiovisual representation in a curiosity-driven manner that prioritizes interacting with high uncertainty objects to obtain good coverage of surprising audio with fewer interactions. We demonstrate that CAVER builds rich representations in different scenarios more efficiently than several exploration baselines, and that the learned audiovisual representation leads to significant improvements in material classification and the imitation of audio-only human demonstrations. https://caver-bot.github.io/
comment: 9 pages, 6 figures
♻ ☆ MiniBEE: A New Form Factor for Compact Bimanual Dexterity
Bimanual robot manipulators can achieve impressive dexterity, but typically rely on two full six- or seven- degree-of-freedom arms so that paired grippers can coordinate effectively. This traditional framework increases system complexity while only exploiting a fraction of the overall workspace for dexterous interaction. We introduce the MiniBEE (Miniature Bimanual End-effector), a compact system in which two reduced-mobility arms (3+ DOF each) are coupled into a kinematic chain that preserves full relative positioning between grippers. To guide our design, we formulate a kinematic dexterity metric that enlarges the dexterous workspace while keeping the mechanism lightweight and wearable. The resulting system supports two complementary modes: (i) wearable kinesthetic data collection with self-tracked gripper poses, and (ii) deployment on a standard robot arm, extending dexterity across its entire workspace. We present kinematic analysis and design optimization methods for maximizing dexterous range, and demonstrate an end-to-end pipeline in which wearable demonstrations train imitation learning policies that perform robust, real-world bimanual manipulation.
♻ ☆ Uncertainty-Aware Active Source Tracking of Marine Pollution using Unmanned Surface Vehicles
This paper proposes an uncertainty-aware marine pollution source tracking framework for unmanned surface vehicles (USVs). By integrating high-fidelity marine pollution dispersion simulation with informative path planning techniques, we demonstrate effective identification of pollution sources in marine environments. The proposed approach is implemented based on Robot Operating System (ROS), processing real-time sensor data to update probabilistic source location estimates. The system progressively refines the estimation of source location while quantifying uncertainty levels in its predictions. Experiments conducted in simulated environments with varying source locations, wave conditions, and starting positions demonstrate the framework's ability to localise pollution sources with high accuracy. Results show that the proposed approach achieves reliable source localisation efficiently and outperforms the existing baseline. This work contributes to the development of full autonomous environmental monitoring capabilities essential for rapid response to marine pollution incidents.
Robotics 36
☆ Bioinspired Soft Quadrotors Jointly Unlock Agility, Squeezability, and Collision Resilience
Natural flyers use soft wings to seamlessly enable a wide range of flight behaviours, including agile manoeuvres, squeezing through narrow passageways, and withstanding collisions. In contrast, conventional quadrotor designs rely on rigid frames that support agile flight but inherently limit collision resilience and squeezability, thereby constraining flight capabilities in cluttered environments. Inspired by the anisotropic stiffness and distributed mass-energy structures observed in biological organisms, we introduce FlexiQuad, a soft-frame quadrotor design approach that limits this trade-off. We demonstrate a 405-gram FlexiQuad prototype, three orders of magnitude more compliant than conventional quadrotors, yet capable of acrobatic manoeuvres with peak speeds above 80 km/h and linear and angular accelerations exceeding 3 g and 300 rad/s$^2$, respectively. Analysis demonstrates it can replicate accelerations of rigid counterparts up to a thrust-to-weight ratio of 8. Simultaneously, FlexiQuad exhibits fourfold higher collision resilience, surviving frontal impacts at 5 m/s without damage and reducing destabilising forces in glancing collisions by a factor of 39. Its frame can fully compress, enabling flight through gaps as narrow as 70% of its nominal width. Our analysis identifies an optimal structural softness range, from 0.006 to 0.77 N/mm, comparable to that of natural flyers' wings, whereby agility, squeezability, and collision resilience are jointly achieved for FlexiQuad models from 20 to 3000 grams. FlexiQuad expands hovering drone capabilities in complex environments, enabling robust physical interactions without compromising flight performance.
comment: 26 pages, 12 figures, 2 tables, 9 videos (not yet disclosed, awaiting peer review)
☆ Stable and Robust SLIP Model Control via Energy Conservation-Based Feedback Cancellation for Quadrupedal Applications
In this paper, we present an energy-conservation based control architecture for stable dynamic motion in quadruped robots. We model the robot as a Spring-loaded Inverted Pendulum (SLIP), a model well-suited to represent the bouncing motion characteristic of running gaits observed in various biological quadrupeds and bio-inspired robotic systems. The model permits leg-orientation control during flight and leg-length control during stance, a design choice inspired by natural quadruped behaviors and prevalent in robotic quadruped systems. Our control algorithm uses the reduced-order SLIP dynamics of the quadruped to track a stable parabolic spline during stance, which is calculated using the principle of energy conservation. Through simulations based on the design specifications of an actual quadruped robot, Ghost Robotics Minitaur, we demonstrate that our control algorithm generates stable bouncing gaits. Additionally, we illustrate the robustness of our controller by showcasing its ability to maintain stable bouncing even when faced with up to a 10% error in sensor measurements.
☆ EveryDayVLA: A Vision-Language-Action Model for Affordable Robotic Manipulation ICRA 2026
While Vision-Language-Action (VLA) models map visual inputs and language instructions directly to robot actions, they often rely on costly hardware and struggle in novel or cluttered scenes. We introduce EverydayVLA, a 6-DOF manipulator that can be assembled for under $300, capable of modest payloads and workspace. A single unified model jointly outputs discrete and continuous actions, and our adaptive-horizon ensemble monitors motion uncertainty to trigger on-the-fly re-planning for safe, reliable operation. On LIBERO, EverydayVLA matches state-of-the-art success rates, and in real-world tests it outperforms prior methods by 49% in-distribution and 34.9% out-of-distribution. By combining a state-of-the-art VLA with cost-effective hardware, EverydayVLA democratizes access to a robotic foundation model and paves the way for economical use in homes and research labs alike. Experiment videos and details: https://everydayvla.github.io/
comment: Submitted to ICRA 2026
☆ Sample Complexity of Distributionally Robust Off-Dynamics Reinforcement Learning with Online Interaction ICML 2025
Off-dynamics reinforcement learning (RL), where training and deployment transition dynamics are different, can be formulated as learning in a robust Markov decision process (RMDP) where uncertainties in transition dynamics are imposed. Existing literature mostly assumes access to generative models allowing arbitrary state-action queries or pre-collected datasets with a good state coverage of the deployment environment, bypassing the challenge of exploration. In this work, we study a more realistic and challenging setting where the agent is limited to online interaction with the training environment. To capture the intrinsic difficulty of exploration in online RMDPs, we introduce the supremal visitation ratio, a novel quantity that measures the mismatch between the training dynamics and the deployment dynamics. We show that if this ratio is unbounded, online learning becomes exponentially hard. We propose the first computationally efficient algorithm that achieves sublinear regret in online RMDPs with $f$-divergence based transition uncertainties. We also establish matching regret lower bounds, demonstrating that our algorithm achieves optimal dependence on both the supremal visitation ratio and the number of interaction episodes. Finally, we validate our theoretical results through comprehensive numerical experiments.
comment: 53 pages, 6 figures, 3 tables. Published in Proceedings of the 42nd International Conference on Machine Learning (ICML 2025)
☆ ETHOS: A Robotic Encountered-Type Haptic Display for Social Interaction in Virtual Reality
We present ETHOS (Encountered-Type Haptics for On-demand Social Interaction), a dynamic encountered-type haptic display (ETHD) that enables natural physical contact in virtual reality (VR) during social interactions such as handovers, fist bumps, and high-fives. The system integrates a torque-controlled robotic manipulator with interchangeable passive props (silicone hand replicas and a baton), marker-based physical-virtual registration via a ChArUco board, and a safety monitor that gates motion based on the user's head and hand pose. We introduce two control strategies: (i) a static mode that presents a stationary prop aligned with its virtual counterpart, consistent with prior ETHD baselines, and (ii) a dynamic mode that continuously updates prop position by exponentially blending an initial mid-point trajectory with real-time hand tracking, generating a unique contact point for each interaction. Bench tests show static colocation accuracy of 5.09 +/- 0.94 mm, while user interactions achieved temporal alignment with an average contact latency of 28.53 +/- 31.21 ms across all interaction and control conditions. These results demonstrate the feasibility of recreating socially meaningful haptics in VR. By incorporating essential safety and control mechanisms, ETHOS establishes a practical foundation for high-fidelity, dynamic interpersonal interactions in virtual environments.
comment: 8 pages
☆ SAD-Flower: Flow Matching for Safe, Admissible, and Dynamically Consistent Planning
Flow matching (FM) has shown promising results in data-driven planning. However, it inherently lacks formal guarantees for ensuring state and action constraints, whose satisfaction is a fundamental and crucial requirement for the safety and admissibility of planned trajectories on various systems. Moreover, existing FM planners do not ensure the dynamical consistency, which potentially renders trajectories inexecutable. We address these shortcomings by proposing SAD-Flower, a novel framework for generating Safe, Admissible, and Dynamically consistent trajectories. Our approach relies on an augmentation of the flow with a virtual control input. Thereby, principled guidance can be derived using techniques from nonlinear control theory, providing formal guarantees for state constraints, action constraints, and dynamic consistency. Crucially, SAD-Flower operates without retraining, enabling test-time satisfaction of unseen constraints. Through extensive experiments across several tasks, we demonstrate that SAD-Flower outperforms various generative-model-based baselines in ensuring constraint satisfaction.
☆ Cleaning Maintenance Logs with LLM Agents for Improved Predictive Maintenance
Economic constraints, limited availability of datasets for reproducibility and shortages of specialized expertise have long been recognized as key challenges to the adoption and advancement of predictive maintenance (PdM) in the automotive sector. Recent progress in large language models (LLMs) presents an opportunity to overcome these barriers and speed up the transition of PdM from research to industrial practice. Under these conditions, we explore the potential of LLM-based agents to support PdM cleaning pipelines. Specifically, we focus on maintenance logs, a critical data source for training well-performing machine learning (ML) models, but one often affected by errors such as typos, missing fields, near-duplicate entries, and incorrect dates. We evaluate LLM agents on cleaning tasks involving six distinct types of noise. Our findings show that LLMs are effective at handling generic cleaning tasks and offer a promising foundation for future industrial applications. While domain-specific errors remain challenging, these results highlight the potential for further improvements through specialized training and enhanced agentic capabilities.
☆ Force-Safe Environment Maps and Real-Time Detection for Soft Robot Manipulators
Soft robot manipulators have the potential for deployment in delicate environments to perform complex manipulation tasks. However, existing obstacle detection and avoidance methods do not consider limits on the forces that manipulators may exert upon contact with delicate obstacles. This work introduces a framework that maps force safety criteria from task space (i.e. positions along the robot's body) to configuration space (i.e. the robot's joint angles) and enables real-time force safety detection. We incorporate limits on allowable environmental contact forces for given task-space obstacles, and map them into configuration space (C-space) through the manipulator's forward kinematics. This formulation ensures that configurations classified as safe are provably below the maximum force thresholds, thereby allowing us to determine force-safe configurations of the soft robot manipulator in real-time. We validate our approach in simulation and hardware experiments on a two-segment pneumatic soft robot manipulator. Results demonstrate that the proposed method accurately detects force safety during interactions with deformable obstacles, thereby laying the foundation for real-time safe planning of soft manipulators in delicate, cluttered environments.
☆ TwinVLA: Data-Efficient Bimanual Manipulation with Twin Single-Arm Vision-Language-Action Models
Vision-language-action models (VLAs) trained on large-scale robotic datasets have demonstrated strong performance on manipulation tasks, including bimanual tasks. However, because most public datasets focus on single-arm demonstrations, adapting VLAs for bimanual tasks typically requires substantial additional bimanual data and fine-tuning. To address this challenge, we introduce TwinVLA, a modular framework that composes two copies of a pretrained single-arm VLA into a coordinated bimanual VLA. Unlike monolithic cross-embodiment models trained on mixtures of single-arm and bimanual data, TwinVLA improves both data efficiency and performance by composing pretrained single-arm policies. Across diverse bimanual tasks in real-world and simulation settings, TwinVLA outperforms a comparably-sized monolithic RDT-1B model without requiring any bimanual pretraining. Furthermore, it narrows the gap to state-of-the-art model, $\pi_0$ which rely on extensive proprietary bimanual data and compute cost. These results establish our modular composition approach as a data-efficient and scalable path toward high-performance bimanual manipulation, leveraging public single-arm data.
comment: Project webpage : https://jellyho.github.io/TwinVLA/
☆ Context-aware Learned Mesh-based Simulation via Trajectory-Level Meta-Learning
Simulating object deformations is a critical challenge across many scientific domains, including robotics, manufacturing, and structural mechanics. Learned Graph Network Simulators (GNSs) offer a promising alternative to traditional mesh-based physics simulators. Their speed and inherent differentiability make them particularly well suited for applications that require fast and accurate simulations, such as robotic manipulation or manufacturing optimization. However, existing learned simulators typically rely on single-step observations, which limits their ability to exploit temporal context. Without this information, these models fail to infer, e.g., material properties. Further, they rely on auto-regressive rollouts, which quickly accumulate error for long trajectories. We instead frame mesh-based simulation as a trajectory-level meta-learning problem. Using Conditional Neural Processes, our method enables rapid adaptation to new simulation scenarios from limited initial data while capturing their latent simulation properties. We utilize movement primitives to directly predict fast, stable and accurate simulations from a single model call. The resulting approach, Movement-primitive Meta-MeshGraphNet (M3GN), provides higher simulation accuracy at a fraction of the runtime cost compared to state-of-the-art GNSs across several tasks.
comment: 35 pages. Submitted to Transactions on Machine Learning Research (TMLR)
☆ Beyond Master and Apprentice: Grounding Foundation Models for Symbiotic Interactive Learning in a Shared Latent Space
Today's autonomous agents can understand free-form natural language instructions and execute long-horizon tasks in a manner akin to human-level reasoning. These capabilities are mostly driven by large-scale pre-trained foundation models (FMs). However, the approaches with which these models are grounded for human-robot interaction (HRI) perpetuate a master-apprentice model, where the apprentice (embodied agent) passively receives and executes the master's (human's) commands without reciprocal learning. This reactive interaction approach does not capture the co-adaptive dynamics inherent in everyday multi-turn human-human interactions. To address this, we propose a Symbiotic Interactive Learning (SIL) approach that enables both the master and the apprentice to co-adapt through mutual, bidirectional interactions. We formalised SIL as a co-adaptation process within a shared latent task space, where the agent and human maintain joint belief states that evolve based on interaction history. This enables the agent to move beyond reactive execution to proactive clarification, adaptive suggestions, and shared plan refinement. To realise these novel behaviours, we leveraged pre-trained FMs for spatial perception and reasoning, alongside a lightweight latent encoder that grounds the models' outputs into task-specific representations. Furthermore, to ensure stability as the tasks evolve, we augment SIL with a memory architecture that prevents the forgetting of learned task-space representations. We validate SIL on both simulated and real-world embodied tasks, including instruction following, information retrieval, query-oriented reasoning, and interactive dialogues. Demos and resources are public at:~\href{https://linusnep.github.io/SIL/}{https://linusnep.github.io/SIL/}.
☆ Let Me Show You: Learning by Retrieving from Egocentric Video for Robotic Manipulation IROS 2025
Robots operating in complex and uncertain environments face considerable challenges. Advanced robotic systems often rely on extensive datasets to learn manipulation tasks. In contrast, when humans are faced with unfamiliar tasks, such as assembling a chair, a common approach is to learn by watching video demonstrations. In this paper, we propose a novel method for learning robot policies by Retrieving-from-Video (RfV), using analogies from human demonstrations to address manipulation tasks. Our system constructs a video bank comprising recordings of humans performing diverse daily tasks. To enrich the knowledge from these videos, we extract mid-level information, such as object affordance masks and hand motion trajectories, which serve as additional inputs to enhance the robot model's learning and generalization capabilities. We further feature a dual-component system: a video retriever that taps into an external video bank to fetch task-relevant video based on task specification, and a policy generator that integrates this retrieved knowledge into the learning cycle. This approach enables robots to craft adaptive responses to various scenarios and generalize to tasks beyond those in the training data. Through rigorous testing in multiple simulated and real-world settings, our system demonstrates a marked improvement in performance over conventional robotic systems, showcasing a significant breakthrough in the field of robotics.
comment: Accepted by IROS 2025
☆ Procedimiento de auditoría de ciberseguridad para sistemas autónomos: metodología, amenazas y mitigaciones SC
The deployment of autonomous systems has experienced remarkable growth in recent years, driven by their integration into sectors such as industry, medicine, logistics, and domestic environments. This expansion is accompanied by a series of security issues that entail significant risks due to the critical nature of autonomous systems, especially those operating in human-interaction environments. Furthermore, technological advancement and the high operational and architectural complexity of autonomous systems have resulted in an increased attack surface. This article presents a specific security auditing procedure for autonomous systems, based on a layer-structured methodology, a threat taxonomy adapted to the robotic context, and a set of concrete mitigation measures. The validity of the proposed approach is demonstrated through four practical case studies applied to representative robotic platforms: the Vision 60 military quadruped from Ghost Robotics, the A1 robot from Unitree Robotics, the UR3 collaborative arm from Universal Robots, and the Pepper social robot from Aldebaran Robotics.
comment: 32 pages, in Spanish language, 7 tables, 12 Figures. White paper under the TESCAC project
☆ Follow-Me in Micro-Mobility with End-to-End Imitation Learning
Autonomous micro-mobility platforms face challenges from the perspective of the typical deployment environment: large indoor spaces or urban areas that are potentially crowded and highly dynamic. While social navigation algorithms have progressed significantly, optimizing user comfort and overall user experience over other typical metrics in robotics (e.g., time or distance traveled) is understudied. Specifically, these metrics are critical in commercial applications. In this paper, we show how imitation learning delivers smoother and overall better controllers, versus previously used manually-tuned controllers. We demonstrate how DAAV's autonomous wheelchair achieves state-of-the-art comfort in follow-me mode, in which it follows a human operator assisting persons with reduced mobility (PRM). This paper analyzes different neural network architectures for end-to-end control and demonstrates their usability in real-world production-level deployments.
☆ Decomposed Object Manipulation via Dual-Actor Policy
Object manipulation, which focuses on learning to perform tasks on similar parts across different types of objects, can be divided into an approaching stage and a manipulation stage. However, previous works often ignore this characteristic of the task and rely on a single policy to directly learn the whole process of object manipulation. To address this problem, we propose a novel Dual-Actor Policy, termed DAP, which explicitly considers different stages and leverages heterogeneous visual priors to enhance each stage. Specifically, we introduce an affordance-based actor to locate the functional part in the manipulation task, thereby improving the approaching process. Following this, we propose a motion flow-based actor to capture the movement of the component, facilitating the manipulation process. Finally, we introduce a decision maker to determine the current stage of DAP and select the corresponding actor. Moreover, existing object manipulation datasets contain few objects and lack the visual priors needed to support training. To address this, we construct a simulated dataset, the Dual-Prior Object Manipulation Dataset, which combines the two visual priors and includes seven tasks, including two challenging long-term, multi-stage tasks. Experimental results on our dataset, the RoboTwin benchmark and real-world scenarios illustrate that our method consistently outperforms the SOTA method by 5.55%, 14.7% and 10.4% on average respectively.
comment: 9 pages, 7 figures, 5 tables
☆ TAPOM: Task-Space Topology-Guided Motion Planning for Manipulating Elongated Object in Cluttered Environments
Robotic manipulation in complex, constrained spaces is vital for widespread applications but challenging, particularly when navigating narrow passages with elongated objects. Existing planning methods often fail in these low-clearance scenarios due to the sampling difficulties or the local minima. This work proposes Topology-Aware Planning for Object Manipulation (TAPOM), which explicitly incorporates task-space topological analysis to enable efficient planning. TAPOM uses a high-level analysis to identify critical pathways and generate guiding keyframes, which are utilized in a low-level planner to find feasible configuration space trajectories. Experimental validation demonstrates significantly high success rates and improved efficiency over state-of-the-art methods on low-clearance manipulation tasks. This approach offers broad implications for enhancing manipulation capabilities of robots in complex real-world environments.
☆ Epically Powerful: An open-source software and mechatronics infrastructure for wearable robotic systems
Epically Powerful is an open-source robotics infrastructure that streamlines the underlying framework of wearable robotic systems - managing communication protocols, clocking, actuator commands, visualization, sensor data acquisition, data logging, and more - while also providing comprehensive guides for hardware selection, system assembly, and controller implementation. Epically Powerful contains a code base enabling simplified user implementation via Python that seamlessly interfaces with various commercial state-of-the-art quasi-direct drive (QDD) actuators, single-board computers, and common sensors, provides example controllers, and enables real-time visualization. To further support device development, the package also includes a recommended parts list and compatibility guide and detailed documentation on hardware and software implementation. The goal of Epically Powerful is to lower the barrier to developing and deploying custom wearable robotic systems without a pre-specified form factor, enabling researchers to go from raw hardware to modular, robust devices quickly and effectively. Though originally designed with wearable robotics in mind, Epically Powerful is broadly applicable to other robotic domains that utilize QDD actuators, single-board computers, and sensors for closed-loop control.
comment: 11 pages, 5 figures. This work has been submitted to the IEEE for possible publication
☆ Tunable Passivity Control for Centralized Multiport Networked Systems
Centralized Multiport Networked Dynamic (CMND) systems have emerged as a key architecture with applications in several complex network systems, such as multilateral telerobotics and multi-agent control. These systems consist of a hub node/subsystem connecting with multiple remote nodes/subsystems via a networked architecture. One challenge for this system is stability, which can be affected by non-ideal network artifacts. Conventional passivity-based approaches can stabilize the system under specialized applications like small-scale networked systems. However, those conventional passive stabilizers have several restrictions, such as distributing compensation across subsystems in a decentralized manner, limiting flexibility, and, at the same time, relying on the restrictive assumptions of node passivity. This paper synthesizes a centralized optimal passivity-based stabilization framework for CMND systems. It consists of a centralized passivity observer monitoring overall energy flow and an optimal passivity controller that distributes the just-needed dissipation among various nodes, guaranteeing strict passivity and, thus, L2 stability. The proposed data-driven model-free approach, i.e., Tunable Centralized Optimal Passivity Control (TCoPC), optimizes total performance based on the prescribed dissipation distribution strategy while ensuring stability. The controller can put high dissipation loads on some sub-networks while relaxing the dissipation on other nodes. Simulation results demonstrate the proposed frameworks performance in a complex task under different time-varying delay scenarios while relaxing the remote nodes minimum phase and passivity assumption, enhancing the scalability and generalizability.
☆ MoE-DP: An MoE-Enhanced Diffusion Policy for Robust Long-Horizon Robotic Manipulation with Skill Decomposition and Failure Recovery
Diffusion policies have emerged as a powerful framework for robotic visuomotor control, yet they often lack the robustness to recover from subtask failures in long-horizon, multi-stage tasks and their learned representations of observations are often difficult to interpret. In this work, we propose the Mixture of Experts-Enhanced Diffusion Policy (MoE-DP), where the core idea is to insert a Mixture of Experts (MoE) layer between the visual encoder and the diffusion model. This layer decomposes the policy's knowledge into a set of specialized experts, which are dynamically activated to handle different phases of a task. We demonstrate through extensive experiments that MoE-DP exhibits a strong capability to recover from disturbances, significantly outperforming standard baselines in robustness. On a suite of 6 long-horizon simulation tasks, this leads to a 36% average relative improvement in success rate under disturbed conditions. This enhanced robustness is further validated in the real world, where MoE-DP also shows significant performance gains. We further show that MoE-DP learns an interpretable skill decomposition, where distinct experts correspond to semantic task primitives (e.g., approaching, grasping). This learned structure can be leveraged for inference-time control, allowing for the rearrangement of subtasks without any re-training.Our video and code are available at the https://moe-dp-website.github.io/MoE-DP-Website/.
☆ Multi-agent Coordination via Flow Matching
This work presents MAC-Flow, a simple yet expressive framework for multi-agent coordination. We argue that requirements of effective coordination are twofold: (i) a rich representation of the diverse joint behaviors present in offline data and (ii) the ability to act efficiently in real time. However, prior approaches often sacrifice one for the other, i.e., denoising diffusion-based solutions capture complex coordination but are computationally slow, while Gaussian policy-based solutions are fast but brittle in handling multi-agent interaction. MAC-Flow addresses this trade-off by first learning a flow-based representation of joint behaviors, and then distilling it into decentralized one-step policies that preserve coordination while enabling fast execution. Across four different benchmarks, including $12$ environments and $34$ datasets, MAC-Flow alleviates the trade-off between performance and computational cost, specifically achieving about $\boldsymbol{\times14.5}$ faster inference compared to diffusion-based MARL methods, while maintaining good performance. At the same time, its inference speed is similar to that of prior Gaussian policy-based offline multi-agent reinforcement learning (MARL) methods.
☆ Encoding Biomechanical Energy Margin into Passivity-based Synchronization for Networked Telerobotic Systems
Maintaining system stability and accurate position tracking is imperative in networked robotic systems, particularly for haptics-enabled human-robot interaction. Recent literature has integrated human biomechanics into the stabilizers implemented for teleoperation, enhancing force preservation while guaranteeing convergence and safety. However, position desynchronization due to imperfect communication and non-passive behaviors remains a challenge. This paper proposes a two-port biomechanics-aware passivity-based synchronizer and stabilizer, referred to as TBPS2. This stabilizer optimizes position synchronization by leveraging human biomechanics while reducing the stabilizer's conservatism in its activation. We provide the mathematical design synthesis of the stabilizer and the proof of stability. We also conducted a series of grid simulations and systematic experiments, comparing their performance with that of state-of-the-art solutions under varying time delays and environmental conditions.
☆ A semi-analytical approach for computing the largest singularity-free spheres of a class of 6-6 Stewart-Gough platforms for specified orientation workspaces
This article presents a method for computing the largest singularity-free sphere (SFS) of a 6-6 Stewart-Gough platform manipulator (SGPM) over a specified orientation workspace. For a fixed orientation of the moving platform, the SFS is computed analytically. This process is repeated over a set of samples generated within the orientation workspace, and the smallest among them is designated as the desired SFS for the given orientation workspace. Numerical experiments are performed on four distinct architectures of the SGPM to understand their relative performances w.r.t. SFS volumes over the same orientation workspace. This study demonstrates the potential utility of the proposed computational method both in analysis and design of SGPMs.
☆ iFlyBot-VLM Technical Report
We introduce iFlyBot-VLM, a general-purpose Vision-Language Model (VLM) used to improve the domain of Embodied Intelligence. The central objective of iFlyBot-VLM is to bridge the cross-modal semantic gap between high-dimensional environmental perception and low-level robotic motion control. To this end, the model abstracts complex visual and spatial information into a body-agnostic and transferable Operational Language, thereby enabling seamless perception-action closed-loop coordination across diverse robotic platforms. The architecture of iFlyBot-VLM is systematically designed to realize four key functional capabilities essential for embodied intelligence: 1) Spatial Understanding and Metric Reasoning; 2) Interactive Target Grounding; 3) Action Abstraction and Control Parameter Generation; 4) Task Planning and Skill Sequencing. We envision iFlyBot-VLM as a scalable and generalizable foundation model for embodied AI, facilitating the progression from specialized task-oriented systems toward generalist, cognitively capable agents. We conducted evaluations on 10 current mainstream embodied intelligence-related VLM benchmark datasets, such as Blink and Where2Place, and achieved optimal performance while preserving the model's general capabilities. We will publicly release both the training data and model weights to foster further research and development in the field of Embodied Intelligence.
♻ ☆ Periodic Skill Discovery NeurIPS 2025
Unsupervised skill discovery in reinforcement learning (RL) aims to learn diverse behaviors without relying on external rewards. However, current methods often overlook the periodic nature of learned skills, focusing instead on increasing the mutual dependence between states and skills or maximizing the distance traveled in latent space. Considering that many robotic tasks - particularly those involving locomotion - require periodic behaviors across varying timescales, the ability to discover diverse periodic skills is essential. Motivated by this, we propose Periodic Skill Discovery (PSD), a framework that discovers periodic behaviors in an unsupervised manner. The key idea of PSD is to train an encoder that maps states to a circular latent space, thereby naturally encoding periodicity in the latent representation. By capturing temporal distance, PSD can effectively learn skills with diverse periods in complex robotic tasks, even with pixel-based observations. We further show that these learned skills achieve high performance on downstream tasks such as hurdling. Moreover, integrating PSD with an existing skill discovery method offers more diverse behaviors, thus broadening the agent's repertoire. Our code and demos are available at https://jonghaepark.github.io/psd/
comment: NeurIPS 2025
♻ ☆ Tactical Decision Making for Autonomous Trucks by Deep Reinforcement Learning with Total Cost of Operation Based Reward
We develop a deep reinforcement learning framework for tactical decision making in an autonomous truck, specifically for Adaptive Cruise Control (ACC) and lane change maneuvers in a highway scenario. Our results demonstrate that it is beneficial to separate high-level decision-making processes and low-level control actions between the reinforcement learning agent and the low-level controllers based on physical models. In the following, we study optimizing the performance with a realistic and multi-objective reward function based on Total Cost of Operation (TCOP) of the truck using different approaches; by adding weights to reward components, by normalizing the reward components and by using curriculum learning techniques.
comment: Paper is accepted for publication in Artificial Intelligence Review
♻ ☆ Ethics-Aware Safe Reinforcement Learning for Rare-Event Risk Control in Interactive Urban Driving
Autonomous vehicles hold great promise for reducing traffic fatalities and improving transportation efficiency, yet their widespread adoption hinges on embedding credible and transparent ethical reasoning into routine and emergency maneuvers, particularly to protect vulnerable road users (VRUs) such as pedestrians and cyclists. Here, we present a hierarchical Safe Reinforcement Learning (Safe RL) framework that augments standard driving objectives with ethics-aware cost signals. At the decision level, a Safe RL agent is trained using a composite ethical risk cost, combining collision probability and harm severity, to generate high-level motion targets. A dynamic, risk-sensitive Prioritized Experience Replay mechanism amplifies learning from rare but critical, high-risk events. At the execution level, polynomial path planning coupled with Proportional-Integral-Derivative (PID) and Stanley controllers translates these targets into smooth, feasible trajectories, ensuring both accuracy and comfort. We train and validate our approach on closed-loop simulation environments derived from large-scale, real-world traffic datasets encompassing diverse vehicles, cyclists, and pedestrians, and demonstrate that it outperforms baseline methods in reducing risk to others while maintaining ego performance and comfort. This work provides a reproducible benchmark for Safe RL with explicitly ethics-aware objectives in human-mixed traffic scenarios. Our results highlight the potential of combining formal control theory and data-driven learning to advance ethically accountable autonomy that explicitly protects those most at risk in urban traffic environments. Across two interactive benchmarks and five random seeds, our policy decreases conflict frequency by 25-45% compared to matched task successes while maintaining comfort metrics within 5%.
♻ ☆ Holistic Evaluation of Multimodal LLMs on Spatial Intelligence
Multimodal models have achieved remarkable progress in recent years. Nevertheless, they continue to exhibit notable limitations in spatial understanding and reasoning, the very capability that anchors artificial general intelligence in the physical world. With the recent release of GPT-5, allegedly the most powerful AI model to date, it is timely to examine where the leading models (GPT, Gemini, Grok, Seed, Qwen, and Intern) stand on the path toward spatial intelligence. We thus propose EASI for holistic Evaluation of multimodAl LLMs on Spatial Intelligence. EASI conceptualizes a comprehensive taxonomy of spatial tasks that unifies existing benchmarks and a standardized protocol for the fair evaluation of state-of-the-art proprietary and open-source models. In this report, we conduct the study across eight key benchmarks, at a cost exceeding ten billion total tokens. Our empirical study then reveals that (1) GPT-5 demonstrates unprecedented strength in spatial intelligence (SI), yet (2) still falls short of human performance significantly across a broad spectrum of SI-tasks. Moreover, we (3) show that SI-tasks expose greater model capability deficiency than non-SI tasks, to the extent that (4) proprietary models do not exhibit a decisive advantage when facing the most difficult ones. In addition, we conduct a qualitative evaluation across a diverse set of scenarios that are intuitive for humans, yet fail even the most advanced multimodal models.
comment: Codebase: https://github.com/EvolvingLMMs-Lab/EASI/
♻ ☆ Pogobot: an Open-Source, Low-Cost Robot for Swarm Robotics and Programmable Active Matter
This paper describes the Pogobot, an open-source platform specifically designed for research at the interface of swarm robotics and active matter. Pogobot features vibration-based or wheel-based locomotion, fast infrared communication, and an array of sensors in a cost-effective package (approx. 250euros/unit). The platform's modular design, comprehensive API, and extensible architecture facilitate the implementation of swarm intelligence algorithms and collective motion. Pogobots offer an accessible alternative to existing platforms while providing advanced capabilities including directional communication between units and fast locomotion, all with a compact form factor. More than 200 Pogobots are already being used on a daily basis in several Universities to study self-organizing systems, programmable active matter, discrete reaction-diffusion-advection systems and computational models of social learning and evolution. This paper details the hardware and software architecture, communication protocols, locomotion mechanisms, and the infrastructure built around the Pogobots.
♻ ☆ Mean-Shift Theory and Its Applications in Swarm Robotics: A New Way to Enhance the Efficiency of Multi-Robot Collaboration
Swarms evolving from collective behaviors among multiple individuals are commonly seen in nature, which enables biological systems to exhibit more efficient and robust collaboration. Creating similar swarm intelligence in engineered robots poses challenges to the design of collaborative algorithms that can be programmed at large scales. The assignment-based method has played an eminent role for a very long time in solving collaboration problems of robot swarms. However, it faces fundamental limitations in terms of efficiency and robustness due to its unscalability to swarm variants. This article presents a tutorial review on recent advances in assignment-free collaboration of robot swarms, focusing on the problem of shape formation. A key theoretical component is the recently developed \emph{mean-shift exploration} strategy, which improves the collaboration efficiency of large-scale swarms by dozens of times. Further, the efficiency improvement is more significant as the swarm scale increases. Finally, this article discusses three important applications of the mean-shift exploration strategy, including precise shape formation, area coverage formation, and maneuvering formation, as well as their corresponding industrial scenarios in smart warehousing, area exploration, and cargo transportation.
♻ ☆ Affordance-based Robot Manipulation with Flow Matching
We present a framework for assistive robot manipulation, which focuses on two fundamental challenges: first, efficiently adapting large-scale models to downstream scene affordance understanding tasks, especially in daily living scenarios where gathering multi-task data involving humans requires strenuous effort; second, effectively learning robot action trajectories by grounding the visual affordance model. We tackle the first challenge by employing a parameter-efficient prompt tuning method that prepends learnable text prompts to the frozen vision model to predict manipulation affordances in multi-task scenarios. Then we propose to learn robot action trajectories guided by affordances in a supervised flow matching method. Flow matching represents a robot visuomotor policy as a conditional process of flowing random waypoints to desired robot action trajectories. Finally, we introduce a real-world dataset with 10 tasks across Activities of Daily Living to test our framework. Our extensive evaluation highlights that the proposed prompt tuning method for learning manipulation affordance achieves competitive performance and even outperforms some other finetuning protocols across data scales, while satisfying parameter efficiency. Learning multi-task robot action trajectories with flow matching leads to consistently favorable results in several robot manipulation benchmarks than some alternative behavior cloning methods. This includes more stable training and evaluation, and noticeably faster inference, while maintaining comparable generalization performance to diffusion policy, where flow matching performs marginally better in most cases. Our framework seamlessly unifies affordance learning and action generation with flow matching for robot manipulation.
♻ ☆ Learning to Navigate Socially Through Proactive Risk Perception
In this report, we describe the technical details of our submission to the IROS 2025 RoboSense Challenge Social Navigation Track. This track focuses on developing RGBD-based perception and navigation systems that enable autonomous agents to navigate safely, efficiently, and socially compliantly in dynamic human-populated indoor environments. The challenge requires agents to operate from an egocentric perspective using only onboard sensors including RGB-D observations and odometry, without access to global maps or privileged information, while maintaining social norm compliance such as safe distances and collision avoidance. Building upon the Falcon model, we introduce a Proactive Risk Perception Module to enhance social navigation performance. Our approach augments Falcon with collision risk understanding that learns to predict distance-based collision risk scores for surrounding humans, which enables the agent to develop more robust spatial awareness and proactive collision avoidance behaviors. The evaluation on the Social-HM3D benchmark demonstrates that our method improves the agent's ability to maintain personal space compliance while navigating toward goals in crowded indoor scenes with dynamic human agents, achieving 2nd place among 16 participating teams in the challenge.
♻ ☆ GeoAware-VLA: Implicit Geometry Aware Vision-Language-Action Model
Vision-Language-Action (VLA) models often fail to generalize to novel camera viewpoints, a limitation stemming from their difficulty in inferring robust 3D geometry from 2D images. We introduce GeoAware-VLA, a simple yet effective approach that enhances viewpoint invariance by integrating strong geometric priors into the vision backbone. Instead of training a visual encoder or relying on explicit 3D data, we leverage a frozen, pretrained geometric vision model as a feature extractor. A trainable projection layer then adapts these geometrically-rich features for the policy decoder, relieving it of the burden of learning 3D consistency from scratch. Through extensive evaluations on LIBERO benchmark subsets, we show GeoAware-VLA achieves substantial improvements in zero-shot generalization to novel camera poses, boosting success rates by over 2x in simulation. Crucially, these benefits translate to the physical world; our model shows a significant performance gain on a real robot, especially when evaluated from unseen camera angles. Our approach proves effective across both continuous and discrete action spaces, highlighting that robust geometric grounding is a key component for creating more generalizable robotic agents.
comment: Under Review, Project Page https://alisharey.github.io/GeoAware-VLA/
♻ ☆ Search-TTA: A Multimodal Test-Time Adaptation Framework for Visual Search in the Wild
To perform outdoor visual navigation and search, a robot may leverage satellite imagery to generate visual priors. This can help inform high-level search strategies, even when such images lack sufficient resolution for target recognition. However, many existing informative path planning or search-based approaches either assume no prior information, or use priors without accounting for how they were obtained. Recent work instead utilizes large Vision Language Models (VLMs) for generalizable priors, but their outputs can be inaccurate due to hallucination, leading to inefficient search. To address these challenges, we introduce Search-TTA, a multimodal test-time adaptation framework with a flexible plug-and-play interface compatible with various input modalities (e.g., image, text, sound) and planning methods (e.g., RL-based). First, we pretrain a satellite image encoder to align with CLIP's visual encoder to output probability distributions of target presence used for visual search. Second, our TTA framework dynamically refines CLIP's predictions during search using uncertainty-weighted gradient updates inspired by Spatial Poisson Point Processes. To train and evaluate Search-TTA, we curate AVS-Bench, a visual search dataset based on internet-scale ecological data containing 380k images and taxonomy data. We find that Search-TTA improves planner performance by up to 30.0%, particularly in cases with poor initial CLIP predictions due to domain mismatch and limited training data. It also performs comparably with significantly larger VLMs, and achieves zero-shot generalization via emergent alignment to unseen modalities. Finally, we deploy Search-TTA on a real UAV via hardware-in-the-loop testing, by simulating its operation within a large-scale simulation that provides onboard sensing.
comment: Accepted for presentation at CORL 2025. Code, models, and data are available at https://search-tta.github.io/
♻ ☆ Octopus-like Reaching Motion: A Perspective Inspired by Whipping
The stereotypical reaching motion of the octopus arm has drawn growing attention for its efficient control of a highly deformable body. Previous studies suggest that its characteristic bend propagation may share underlying principles with the dynamics of a whip. This work investigates whether whip-like passive dynamics in water can reproduce the kinematic features observed in biological reaching and their similarities and differences. Platform-based whipping tests were performed in water and air while systematically varying material stiffness and driving speed. Image-based quantification revealed that the Ecoflex Gel 2 arm driven at 150 rpm (motor speed) reproduced curvature propagation similar to that observed in octopus reaching. However, its bend-point velocity decreased monotonically rather than exhibiting the biological bell-shaped profile, confirming that the octopus reaching movement is not merely a passive whipping behavior. The absence of propagation in air further highlights the critical role of the surrounding medium in forming octopus-like reaching motion. This study provides a new perspective for understand biological reaching movement, and offers a potential platform for future hydrodynamic research.
comment: The first two listed authors contributed equally. Yiyuan Zhang is the corresponding author
♻ ☆ ReNiL: Event-Driven Pedestrian Bayesian Localization Using IMU for Real-World Applications
Pedestrian inertial localization is key for mobile and IoT services because it provides infrastructure-free positioning. Yet most learning-based methods depend on fixed sliding-window integration, struggle to adapt to diverse motion scales and cadences, and yield inconsistent uncertainty, limiting real-world use. We present ReNiL, a Bayesian deep-learning framework for accurate, efficient, and uncertainty-aware pedestrian localization. ReNiL introduces Inertial Positioning Demand Points (IPDPs) to estimate motion at contextually meaningful waypoints instead of dense tracking, and supports inference on IMU sequences at any scale so cadence can match application needs. It couples a motion-aware orientation filter with an Any-Scale Laplace Estimator (ASLE), a dual-task network that blends patch-based self-supervision with Bayesian regression. By modeling displacements with a Laplace distribution, ReNiL provides homogeneous Euclidean uncertainty that integrates cleanly with other sensors. A Bayesian inference chain links successive IPDPs into consistent trajectories. On RoNIN-ds and a new WUDataset covering indoor and outdoor motion from 28 participants, ReNiL achieves state-of-the-art displacement accuracy and uncertainty consistency, outperforming TLIO, CTIN, iMoT, and RoNIN variants while reducing computation. Application studies further show robustness and practicality for mobile and IoT localization, making ReNiL a scalable, uncertainty-aware foundation for next-generation positioning.
comment: This work has been submitted to the ACM for possible publication
♻ ☆ Generalizing Robot Trajectories from Single-Context Human Demonstrations: A Probabilistic Approach
Generalizing robot trajectories from human demonstrations to new contexts remains a key challenge in Learning from Demonstration (LfD), particularly when only single-context demonstrations are available. We present a novel Gaussian Mixture Model (GMM)-based approach that enables systematic generalization from single-context demonstrations to a wide range of unseen start and goal configurations. Our method performs component-level reparameterization of the GMM, adapting both mean vectors and covariance matrices, followed by Gaussian Mixture Regression (GMR) to generate smooth trajectories. We evaluate the approach on a dual-arm pick-and-place task with varying box placements, comparing against several baselines. Results show that our method significantly outperforms baselines in trajectory success and fidelity, maintaining accuracy even under combined translational and rotational variations of task configurations. These results demonstrate that our method generalizes effectively while ensuring boundary convergence and preserving the intrinsic structure of demonstrated motions.