Robotics 52
☆ EfficientFlow: Efficient Equivariant Flow Policy Learning for Embodied AI AAAI 2026
Generative modeling has recently shown remarkable promise for visuomotor policy learning, enabling flexible and expressive control across diverse embodied AI tasks. However, existing generative policies often struggle with data inefficiency, requiring large-scale demonstrations, and sampling inefficiency, incurring slow action generation during inference. We introduce EfficientFlow, a unified framework for efficient embodied AI with flow-based policy learning. To enhance data efficiency, we bring equivariance into flow matching. We theoretically prove that when using an isotropic Gaussian prior and an equivariant velocity prediction network, the resulting action distribution remains equivariant, leading to improved generalization and substantially reduced data demands. To accelerate sampling, we propose a novel acceleration regularization strategy. As direct computation of acceleration is intractable for marginal flow trajectories, we derive a novel surrogate loss that enables stable and scalable training using only conditional trajectories. Across a wide range of robotic manipulation benchmarks, the proposed algorithm achieves competitive or superior performance under limited data while offering dramatically faster inference. These results highlight EfficientFlow as a powerful and efficient paradigm for high-performance embodied AI.
comment: Accepted by AAAI 2026. Project Page: https://efficientflow.github.io/
☆ Data-Centric Visual Development for Self-Driving Labs
Self-driving laboratories offer a promising path toward reducing the labor-intensive, time-consuming, and often irreproducible workflows in the biological sciences. Yet their stringent precision requirements demand highly robust models whose training relies on large amounts of annotated data. However, this kind of data is difficult to obtain in routine practice, especially negative samples. In this work, we focus on pipetting, the most critical and precision sensitive action in SDLs. To overcome the scarcity of training data, we build a hybrid pipeline that fuses real and virtual data generation. The real track adopts a human-in-the-loop scheme that couples automated acquisition with selective human verification to maximize accuracy with minimal effort. The virtual track augments the real data using reference-conditioned, prompt-guided image generation, which is further screened and validated for reliability. Together, these two tracks yield a class-balanced dataset that enables robust bubble detection training. On a held-out real test set, a model trained entirely on automatically acquired real images reaches 99.6% accuracy, and mixing real and generated data during training sustains 99.4% accuracy while reducing collection and review load. Our approach offers a scalable and cost-effective strategy for supplying visual feedback data to SDL workflows and provides a practical solution to data scarcity in rare event detection and broader vision tasks.
comment: 11 pages, 4 figures
☆ Visual Sync: Multi-Camera Synchronization via Cross-View Object Motion NeurIPS 2025
Today, people can easily record memorable moments, ranging from concerts, sports events, lectures, family gatherings, and birthday parties with multiple consumer cameras. However, synchronizing these cross-camera streams remains challenging. Existing methods assume controlled settings, specific targets, manual correction, or costly hardware. We present VisualSync, an optimization framework based on multi-view dynamics that aligns unposed, unsynchronized videos at millisecond accuracy. Our key insight is that any moving 3D point, when co-visible in two cameras, obeys epipolar constraints once properly synchronized. To exploit this, VisualSync leverages off-the-shelf 3D reconstruction, feature matching, and dense tracking to extract tracklets, relative poses, and cross-view correspondences. It then jointly minimizes the epipolar error to estimate each camera's time offset. Experiments on four diverse, challenging datasets show that VisualSync outperforms baseline methods, achieving an median synchronization error below 50 ms.
comment: Accepted to NeurIPS 2025. Project page: https://stevenlsw.github.io/visualsync/
☆ ManualVLA: A Unified VLA Model for Chain-of-Thought Manual Generation and Robotic Manipulation
Chenyang Gu, Jiaming Liu, Hao Chen, Runzhong Huang, Qingpo Wuwu, Zhuoyang Liu, Xiaoqi Li, Ying Li, Renrui Zhang, Peng Jia, Pheng-Ann Heng, Shanghang Zhang
Vision-Language-Action (VLA) models have recently emerged, demonstrating strong generalization in robotic scene understanding and manipulation. However, when confronted with long-horizon tasks that require defined goal states, such as LEGO assembly or object rearrangement, existing VLA models still face challenges in coordinating high-level planning with precise manipulation. Therefore, we aim to endow a VLA model with the capability to infer the "how" process from the "what" outcomes, transforming goal states into executable procedures. In this paper, we introduce ManualVLA, a unified VLA framework built upon a Mixture-of-Transformers (MoT) architecture, enabling coherent collaboration between multimodal manual generation and action execution. Unlike prior VLA models that directly map sensory inputs to actions, we first equip ManualVLA with a planning expert that generates intermediate manuals consisting of images, position prompts, and textual instructions. Building upon these multimodal manuals, we design a Manual Chain-of-Thought (ManualCoT) reasoning process that feeds them into the action expert, where each manual step provides explicit control conditions, while its latent representation offers implicit guidance for accurate manipulation. To alleviate the burden of data collection, we develop a high-fidelity digital-twin toolkit based on 3D Gaussian Splatting, which automatically generates manual data for planning expert training. ManualVLA demonstrates strong real-world performance, achieving an average success rate 32% higher than the previous hierarchical SOTA baseline on LEGO assembly and object rearrangement tasks.
☆ Learning Dexterous Manipulation Skills from Imperfect Simulations
Reinforcement learning and sim-to-real transfer have made significant progress in dexterous manipulation. However, progress remains limited by the difficulty of simulating complex contact dynamics and multisensory signals, especially tactile feedback. In this work, we propose \ours, a sim-to-real framework that addresses these limitations and demonstrates its effectiveness on nut-bolt fastening and screwdriving with multi-fingered hands. The framework has three stages. First, we train reinforcement learning policies in simulation using simplified object models that lead to the emergence of correct finger gaits. We then use the learned policy as a skill primitive within a teleoperation system to collect real-world demonstrations that contain tactile and proprioceptive information. Finally, we train a behavior cloning policy that incorporates tactile sensing and show that it generalizes to nuts and screwdrivers with diverse geometries. Experiments across both tasks show high task progress ratios compared to direct sim-to-real transfer and robust performance even on unseen object shapes and under external perturbations. Videos and code are available on https://dexscrew.github.io.
☆ LLM-Driven Corrective Robot Operation Code Generation with Static Text-Based Simulation
Recent advances in Large language models (LLMs) have demonstrated their promising capabilities of generating robot operation code to enable LLM-driven robots. To enhance the reliability of operation code generated by LLMs, corrective designs with feedback from the observation of executing code have been increasingly adopted in existing research. However, the code execution in these designs relies on either a physical experiment or a customized simulation environment, which limits their deployment due to the high configuration effort of the environment and the potential long execution time. In this paper, we explore the possibility of directly leveraging LLM to enable static simulation of robot operation code, and then leverage it to design a new reliable LLM-driven corrective robot operation code generation framework. Our framework configures the LLM as a static simulator with enhanced capabilities that reliably simulate robot code execution by interpreting actions, reasoning over state transitions, analyzing execution outcomes, and generating se- mantic observations that accurately capture trajectory dynamics. To validate the performance of our framework, we performed experiments on various operation tasks for different robots, including UAVs and small ground vehicles. The experiment results not only demonstrated the high accuracy of our static text-based simulation but also the reliable code generation of our LLM-driven corrective framework, which achieves a comparable performance with state-of-the-art research while does not rely on dynamic code execution using physical experiments or simulators.
comment: 8 pages, 2 figures
☆ Learning Sim-to-Real Humanoid Locomotion in 15 Minutes
Massively parallel simulation has reduced reinforcement learning (RL) training time for robots from days to minutes. However, achieving fast and reliable sim-to-real RL for humanoid control remains difficult due to the challenges introduced by factors such as high dimensionality and domain randomization. In this work, we introduce a simple and practical recipe based on off-policy RL algorithms, i.e., FastSAC and FastTD3, that enables rapid training of humanoid locomotion policies in just 15 minutes with a single RTX 4090 GPU. Our simple recipe stabilizes off-policy RL algorithms at massive scale with thousands of parallel environments through carefully tuned design choices and minimalist reward functions. We demonstrate rapid end-to-end learning of humanoid locomotion controllers on Unitree G1 and Booster T1 robots under strong domain randomization, e.g., randomized dynamics, rough terrain, and push perturbations, as well as fast training of whole-body human-motion tracking policies. We provide videos and open-source implementation at: https://younggyo.me/fastsac-humanoid.
comment: Project website: https://younggyo.me/fastsac-humanoid
☆ RoaD: Rollouts as Demonstrations for Closed-Loop Supervised Fine-Tuning of Autonomous Driving Policies
Guillermo Garcia-Cobo, Maximilian Igl, Peter Karkus, Zhejun Zhang, Michael Watson, Yuxiao Chen, Boris Ivanovic, Marco Pavone
Autonomous driving policies are typically trained via open-loop behavior cloning of human demonstrations. However, such policies suffer from covariate shift when deployed in closed loop, leading to compounding errors. We introduce Rollouts as Demonstrations (RoaD), a simple and efficient method to mitigate covariate shift by leveraging the policy's own closed-loop rollouts as additional training data. During rollout generation, RoaD incorporates expert guidance to bias trajectories toward high-quality behavior, producing informative yet realistic demonstrations for fine-tuning. This approach enables robust closed-loop adaptation with orders of magnitude less data than reinforcement learning, and avoids restrictive assumptions of prior closed-loop supervised fine-tuning (CL-SFT) methods, allowing broader applications domains including end-to-end driving. We demonstrate the effectiveness of RoaD on WOSAC, a large-scale traffic simulation benchmark, where it performs similar or better than the prior CL-SFT method; and in AlpaSim, a high-fidelity neural reconstruction-based simulator for end-to-end driving, where it improves driving score by 41\% and reduces collisions by 54\%.
comment: Preprint
☆ Forecasting in Offline Reinforcement Learning for Non-stationary Environments NeurIPS 2025
Offline Reinforcement Learning (RL) provides a promising avenue for training policies from pre-collected datasets when gathering additional interaction data is infeasible. However, existing offline RL methods often assume stationarity or only consider synthetic perturbations at test time, assumptions that often fail in real-world scenarios characterized by abrupt, time-varying offsets. These offsets can lead to partial observability, causing agents to misperceive their true state and degrade performance. To overcome this challenge, we introduce Forecasting in Non-stationary Offline RL (FORL), a framework that unifies (i) conditional diffusion-based candidate state generation, trained without presupposing any specific pattern of future non-stationarity, and (ii) zero-shot time-series foundation models. FORL targets environments prone to unexpected, potentially non-Markovian offsets, requiring robust agent performance from the onset of each episode. Empirical evaluations on offline RL benchmarks, augmented with real-world time-series data to simulate realistic non-stationarity, demonstrate that FORL consistently improves performance compared to competitive baselines. By integrating zero-shot forecasting with the agent's experience, we aim to bridge the gap between offline RL and the complexities of real-world, non-stationary environments.
comment: The Thirty-Ninth Annual Conference on Neural Information Processing Systems, NeurIPS 2025
☆ GrndCtrl: Grounding World Models via Self-Supervised Reward Alignment
Haoyang He, Jay Patrikar, Dong-Ki Kim, Max Smith, Daniel McGann, Ali-akbar Agha-mohammadi, Shayegan Omidshafiei, Sebastian Scherer
Recent advances in video world modeling have enabled large-scale generative models to simulate embodied environments with high visual fidelity, providing strong priors for prediction, planning, and control. Yet, despite their realism, these models often lack geometric grounding, limiting their use in navigation tasks that require spatial coherence and long-horizon stability. We introduce Reinforcement Learning with World Grounding (RLWG), a self-supervised post-training framework that aligns pretrained world models with a physically verifiable structure through geometric and perceptual rewards. Analogous to reinforcement learning from verifiable feedback (RLVR) in language models, RLWG can use multiple rewards that measure pose cycle-consistency, depth reprojection, and temporal coherence. We instantiate this framework with GrndCtrl, a reward-aligned adaptation method based on Group Relative Policy Optimization (GRPO), yielding world models that maintain stable trajectories, consistent geometry, and reliable rollouts for embodied navigation. Like post-training alignment in large language models, GrndCtrl leverages verifiable rewards to bridge generative pretraining and grounded behavior, achieving superior spatial coherence and navigation stability over supervised fine-tuning in outdoor environments.
☆ Guardian: Detecting Robotic Planning and Execution Errors with Vision-Language Models
Robust robotic manipulation requires reliable failure detection and recovery. Although current Vision-Language Models (VLMs) show promise, their accuracy and generalization are limited by the scarcity of failure data. To address this data gap, we propose an automatic robot failure synthesis approach that procedurally perturbs successful trajectories to generate diverse planning and execution failures. This method produces not only binary classification labels but also fine-grained failure categories and step-by-step reasoning traces in both simulation and the real world. With it, we construct three new failure detection benchmarks: RLBench-Fail, BridgeDataV2-Fail, and UR5-Fail, substantially expanding the diversity and scale of existing failure datasets. We then train Guardian, a VLM with multi-view images for detailed failure reasoning and detection. Guardian achieves state-of-the-art performance on both existing and newly introduced benchmarks. It also effectively improves task success rates when integrated into a state-of-the-art manipulation system in simulation and real robots, demonstrating the impact of our generated failure data.
comment: 9 pages, 9 figures, 6 tables
☆ Real-World Robot Control by Deep Active Inference With a Temporally Hierarchical World Model
Robots in uncertain real-world environments must perform both goal-directed and exploratory actions. However, most deep learning-based control methods neglect exploration and struggle under uncertainty. To address this, we adopt deep active inference, a framework that accounts for human goal-directed and exploratory actions. Yet, conventional deep active inference approaches face challenges due to limited environmental representation capacity and high computational cost in action selection. We propose a novel deep active inference framework that consists of a world model, an action model, and an abstract world model. The world model encodes environmental dynamics into hidden state representations at slow and fast timescales. The action model compresses action sequences into abstract actions using vector quantization, and the abstract world model predicts future slow states conditioned on the abstract action, enabling low-cost action selection. We evaluate the framework on object-manipulation tasks with a real-world robot. Results show that it achieves high success rates across diverse manipulation tasks and switches between goal-directed and exploratory actions in uncertain settings, while making action selection computationally tractable. These findings highlight the importance of modeling multiple timescale dynamics and abstracting actions and state transitions.
comment: Accepted for publication in IEEE Robotics and Automation Letters (RA-L)
☆ NeuroHJR: Hamilton-Jacobi Reachability-based Obstacle Avoidance in Complex Environments with Physics-Informed Neural Networks
Autonomous ground vehicles (AGVs) must navigate safely in cluttered environments while accounting for complex dynamics and environmental uncertainty. Hamilton-Jacobi Reachability (HJR) offers formal safety guarantees through the computation of forward and backward reachable sets, but its application is hindered by poor scalability in environments with numerous obstacles. In this paper, we present a novel framework called NeuroHJR that leverages Physics-Informed Neural Networks (PINNs) to approximate the HJR solution for real-time obstacle avoidance. By embedding system dynamics and safety constraints directly into the neural network loss function, our method bypasses the need for grid-based discretization and enables efficient estimation of reachable sets in continuous state spaces. We demonstrate the effectiveness of our approach through simulation results in densely cluttered scenarios, showing that it achieves safety performance comparable to that of classical HJR solvers while significantly reducing the computational cost. This work provides a new step toward real-time, scalable deployment of reachability-based obstacle avoidance in robotics.
comment: Author-accepted version. Accepted at IEEE 11th Indian Control Conference (ICC), 2025
☆ Is Image-based Object Pose Estimation Ready to Support Grasping?
We present a framework for evaluating 6-DoF instance-level object pose estimators, focusing on those that require a single RGB (not RGB-D) image as input. Besides gaining intuition about how accurate these estimators are, we are interested in the degree to which they can serve as the sole perception mechanism for robotic grasping. To assess this, we perform grasping trials in a physics-based simulator, using image-based pose estimates to guide a parallel gripper and an underactuated robotic hand in picking up 3D models of objects. Our experiments on a subset of the BOP (Benchmark for 6D Object Pose Estimation) dataset compare five open-source object pose estimators and provide insights that were missing from the literature.
☆ Register Any Point: Scaling 3D Point Cloud Registration by Flow Matching
Point cloud registration aligns multiple unposed point clouds into a common frame, and is a core step for 3D reconstruction and robot localization. In this work, we cast registration as conditional generation: a learned continuous, point-wise velocity field transports noisy points to a registered scene, from which the pose of each view is recovered. Unlike previous methods that conduct correspondence matching to estimate the transformation between a pair of point clouds and then optimize the pairwise transformations to realize multi-view registration, our model directly generates the registered point cloud. With a lightweight local feature extractor and test-time rigidity enforcement, our approach achieves state-of-the-art results on pairwise and multi-view registration benchmarks, particularly with low overlap, and generalizes across scales and sensor modalities. It further supports downstream tasks including relocalization, multi-robot SLAM, and multi-session map merging. Source code available at: https://github.com/PRBonn/RAP.
comment: 22 pages
☆ Much Ado About Noising: Dispelling the Myths of Generative Robotic Control
Chaoyi Pan, Giri Anantharaman, Nai-Chieh Huang, Claire Jin, Daniel Pfrommer, Chenyang Yuan, Frank Permenter, Guannan Qu, Nicholas Boffi, Guanya Shi, Max Simchowitz
Generative models, like flows and diffusions, have recently emerged as popular and efficacious policy parameterizations in robotics. There has been much speculation as to the factors underlying their successes, ranging from capturing multi-modal action distribution to expressing more complex behaviors. In this work, we perform a comprehensive evaluation of popular generative control policies (GCPs) on common behavior cloning (BC) benchmarks. We find that GCPs do not owe their success to their ability to capture multi-modality or to express more complex observation-to-action mappings. Instead, we find that their advantage stems from iterative computation, as long as intermediate steps are supervised during training and this supervision is paired with a suitable level of stochasticity. As a validation of our findings, we show that a minimum iterative policy (MIP), a lightweight two-step regression-based policy, essentially matches the performance of flow GCPs, and often outperforms distilled shortcut models. Our results suggest that the distribution-fitting component of GCPs is less salient than commonly believed, and point toward new design spaces focusing solely on control performance. Project page: https://simchowitzlabpublic.github.io/much-ado-about-noising-project/
☆ GR-RL: Going Dexterous and Precise for Long-Horizon Robotic Manipulation
Yunfei Li, Xiao Ma, Jiafeng Xu, Yu Cui, Zhongren Cui, Zhigang Han, Liqun Huang, Tao Kong, Yuxiao Liu, Hao Niu, Wanli Peng, Jingchao Qiao, Zeyu Ren, Haixin Shi, Zhi Su, Jiawen Tian, Yuyang Xiao, Shenyu Zhang, Liwei Zheng, Hang Li, Yonghui Wu
We present GR-RL, a robotic learning framework that turns a generalist vision-language-action (VLA) policy into a highly capable specialist for long-horizon dexterous manipulation. Assuming the optimality of human demonstrations is core to existing VLA policies. However, we claim that in highly dexterous and precise manipulation tasks, human demonstrations are noisy and suboptimal. GR-RL proposes a multi-stage training pipeline that filters, augments, and reinforces the demonstrations by reinforcement learning. First, GR-RL learns a vision-language-conditioned task progress, filters the demonstration trajectories, and only keeps the transitions that contribute positively to the progress. Specifically, we show that by directly applying offline RL with sparse reward, the resulting $Q$-values can be treated as a robust progress function. Next, we introduce morphological symmetry augmentation that greatly improves the generalization and performance of GR-RL. Lastly, to better align the VLA policy with its deployment behaviors for high-precision control, we perform online RL by learning a latent space noise predictor. With this pipeline, GR-RL is, to our knowledge, the first learning-based policy that can autonomously lace up a shoe by threading shoelaces through multiple eyelets with an 83.3% success rate, a task requiring long-horizon reasoning, millimeter-level precision, and compliant soft-body interaction. We hope GR-RL provides a step toward enabling generalist robot foundations models to specialize into reliable real-world experts.
☆ IGen: Scalable Data Generation for Robot Learning from Open-World Images
Chenghao Gu, Haolan Kang, Junchao Lin, Jinghe Wang, Duo Wu, Shuzhao Xie, Fanding Huang, Junchen Ge, Ziyang Gong, Letian Li, Hongying Zheng, Changwei Lv, Zhi Wang
The rise of generalist robotic policies has created an exponential demand for large-scale training data. However, on-robot data collection is labor-intensive and often limited to specific environments. In contrast, open-world images capture a vast diversity of real-world scenes that naturally align with robotic manipulation tasks, offering a promising avenue for low-cost, large-scale robot data acquisition. Despite this potential, the lack of associated robot actions hinders the practical use of open-world images for robot learning, leaving this rich visual resource largely unexploited. To bridge this gap, we propose IGen, a framework that scalably generates realistic visual observations and executable actions from open-world images. IGen first converts unstructured 2D pixels into structured 3D scene representations suitable for scene understanding and manipulation. It then leverages the reasoning capabilities of vision-language models to transform scene-specific task instructions into high-level plans and generate low-level actions as SE(3) end-effector pose sequences. From these poses, it synthesizes dynamic scene evolution and renders temporally coherent visual observations. Experiments validate the high quality of visuomotor data generated by IGen, and show that policies trained solely on IGen-synthesized data achieve performance comparable to those trained on real-world data. This highlights the potential of IGen to support scalable data generation from open-world images for generalist robotic policy training.
comment: 8 pages, 8 figures
☆ AgriLiRa4D: A Multi-Sensor UAV Dataset for Robust SLAM in Challenging Agricultural Fields
Multi-sensor Simultaneous Localization and Mapping (SLAM) is essential for Unmanned Aerial Vehicles (UAVs) performing agricultural tasks such as spraying, surveying, and inspection. However, real-world, multi-modal agricultural UAV datasets that enable research on robust operation remain scarce. To address this gap, we present AgriLiRa4D, a multi-modal UAV dataset designed for challenging outdoor agricultural environments. AgriLiRa4D spans three representative farmland types-flat, hilly, and terraced-and includes both boundary and coverage operation modes, resulting in six flight sequence groups. The dataset provides high-accuracy ground-truth trajectories from a Fiber Optic Inertial Navigation System with Real-Time Kinematic capability (FINS_RTK), along with synchronized measurements from a 3D LiDAR, a 4D Radar, and an Inertial Measurement Unit (IMU), accompanied by complete intrinsic and extrinsic calibrations. Leveraging its comprehensive sensor suite and diverse real-world scenarios, AgriLiRa4D supports diverse SLAM and localization studies and enables rigorous robustness evaluation against low-texture crops, repetitive patterns, dynamic vegetation, and other challenges of real agricultural environments. To further demonstrate its utility, we benchmark four state-of-the-art multi-sensor SLAM algorithms across different sensor combinations, highlighting the difficulty of the proposed sequences and the necessity of multi-modal approaches for reliable UAV localization. By filling a critical gap in agricultural SLAM datasets, AgriLiRa4D provides a valuable benchmark for the research community and contributes to advancing autonomous navigation technologies for agricultural UAVs. The dataset can be downloaded from: https://zhan994.github.io/AgriLiRa4D.
☆ DiG-Flow: Discrepancy-Guided Flow Matching for Robust VLA Models
Vision-Language-Action (VLA) models trained with flow matching have demonstrated impressive capabilities on robotic manipulation tasks. However, their performance often degrades under distribution shift and on complex multi-step tasks, suggesting that the learned representations may not robustly capture task-relevant semantics. We introduce DiG-Flow, a principled framework that enhances VLA robustness through geometric regularization. Our key insight is that the distributional discrepancy between observation and action embeddings provides a meaningful geometric signal: lower transport cost indicates compatible representations, while higher cost suggests potential misalignment. DiG-Flow computes a discrepancy measure between empirical distributions of observation and action embeddings, maps it to a modulation weight via a monotone function, and applies residual updates to the observation embeddings before flow matching. Crucially, this intervention operates at the representation level without modifying the flow matching path or target vector field. We provide theoretical guarantees showing that discrepancy-guided training provably decreases the training objective, and that guided inference refinement converges with contraction. Empirically, DiG-Flow integrates into existing VLA architectures with negligible overhead and consistently improves performance, with particularly pronounced gains on complex multi-step tasks and under limited training data.
☆ Dynamic Log-Gaussian Process Control Barrier Function for Safe Robotic Navigation in Dynamic Environments
Control Barrier Functions (CBFs) have emerged as efficient tools to address the safe navigation problem for robot applications. However, synthesizing informative and obstacle motion-aware CBFs online using real-time sensor data remains challenging, particularly in unknown and dynamic scenarios. Motived by this challenge, this paper aims to propose a novel Gaussian Process-based formulation of CBF, termed the Dynamic Log Gaussian Process Control Barrier Function (DLGP-CBF), to enable real-time construction of CBF which are both spatially informative and responsive to obstacle motion. Firstly, the DLGP-CBF leverages a logarithmic transformation of GP regression to generate smooth and informative barrier values and gradients, even in sparse-data regions. Secondly, by explicitly modeling the DLGP-CBF as a function of obstacle positions, the derived safety constraint integrates predicted obstacle velocities, allowing the controller to proactively respond to dynamic obstacles' motion. Simulation results demonstrate significant improvements in obstacle avoidance performance, including increased safety margins, smoother trajectories, and enhanced responsiveness compared to baseline methods.
comment: To be presented in the 64th IEEE Conference on Decision and Control (CDC 2025)
☆ SPARK: Sim-ready Part-level Articulated Reconstruction with VLM Knowledge
Articulated 3D objects are critical for embodied AI, robotics, and interactive scene understanding, yet creating simulation-ready assets remains labor-intensive and requires expert modeling of part hierarchies and motion structures. We introduce SPARK, a framework for reconstructing physically consistent, kinematic part-level articulated objects from a single RGB image. Given an input image, we first leverage VLMs to extract coarse URDF parameters and generate part-level reference images. We then integrate the part-image guidance and the inferred structure graph into a generative diffusion transformer to synthesize consistent part and complete shapes of articulated objects. To further refine the URDF parameters, we incorporate differentiable forward kinematics and differentiable rendering to optimize joint types, axes, and origins under VLM-generated open-state supervision. Extensive experiments show that SPARK produces high-quality, simulation-ready articulated assets across diverse categories, enabling downstream applications such as robotic manipulation and interaction modeling.
☆ Integrated YOLOP Perception and Lyapunov-based Control for Autonomous Mobile Robot Navigation on Track
This work presents a real-time autonomous track navigation framework for nonholonomic differential-drive mobile robots by jointly integrating multi-task visual perception and a provably stable tracking controller. The perception pipeline reconstructs lane centerlines using 2D-to-3D camera projection, arc-length based uniform point resampling, and cubic polynomial fitting solved via robust QR least-squares optimization. The controller regulates robot linear and angular velocities through a Lyapunov-stability grounded design, ensuring bounded error dynamics and asymptotic convergence of position and heading deviations even in dynamic and partially perceived lane scenarios, without relying on HD prior maps or global satellite localization. Real-world experiments on embedded platforms verify system fidelity, real-time execution, trajectory smoothness, and closed-loop stability for reliable autonomous navigation.
comment: This is a master's graduation thesis that has not been formally published. Uploaded with the author's copyright permission. No confidential content involved
☆ A Cross-Embodiment Gripper Benchmark for Rigid-Object Manipulation in Aerial and Industrial Robotics
Marek Vagas, Martin Varga, Jaroslav Romancik, Ondrej Majercak, Alejandro Suarez, Anibal Ollero, Bram Vanderborght, Ivan Virgala
Robotic grippers are increasingly deployed across industrial, collaborative, and aerial platforms, where each embodiment imposes distinct mechanical, energetic, and operational constraints. Established YCB and NIST benchmarks quantify grasp success, force, or timing on a single platform, but do not evaluate cross-embodiment transferability or energy-aware performance, capabilities essential for modern mobile and aerial manipulation. This letter introduces the Cross-Embodiment Gripper Benchmark (CEGB), a compact and reproducible benchmarking suite extending YCB and selected NIST metrics with three additional components: a transfer-time benchmark measuring the practical effort required to exchange embodiments, an energy-consumption benchmark evaluating grasping and holding efficiency, and an intent-specific ideal payload assessment reflecting design-dependent operational capability. Together, these metrics characterize both grasp performance and the suitability of reusing a single gripper across heterogeneous robotic systems. A lightweight self-locking gripper prototype is implemented as a reference case. Experiments demonstrate rapid embodiment transfer (median ~= 17.6 s across user groups), low holding energy for gripper prototype (~= 1.5 J per 10 s), and consistent grasp performance with cycle times of 3.2 - 3.9 s and success rates exceeding 90%. CEGB thus provides a reproducible foundation for cross-platform, energy-aware evaluation of grippers in aerial and manipulators domains.
☆ L2M-Calib: One-key Calibration Method for LiDAR and Multiple Magnetic Sensors
Multimodal sensor fusion enables robust environmental perception by leveraging complementary information from heterogeneous sensing modalities. However, accurate calibration is a critical prerequisite for effective fusion. This paper proposes a novel one-key calibration framework named L2M-Calib for a fused magnetic-LiDAR system, jointly estimating the extrinsic transformation between the two kinds of sensors and the intrinsic distortion parameters of the magnetic sensors. Magnetic sensors capture ambient magnetic field (AMF) patterns, which are invariant to geometry, texture, illumination, and weather, making them suitable for challenging environments. Nonetheless, the integration of magnetic sensing into multimodal systems remains underexplored due to the absence of effective calibration techniques. To address this, we optimize extrinsic parameters using an iterative Gauss-Newton scheme, coupled with the intrinsic calibration as a weighted ridge-regularized total least squares (w-RRTLS) problem, ensuring robustness against measurement noise and ill-conditioned data. Extensive evaluations on both simulated datasets and real-world experiments, including AGV-mounted sensor configurations, demonstrate that our method achieves high calibration accuracy and robustness under various environmental and operational conditions.
☆ NavForesee: A Unified Vision-Language World Model for Hierarchical Planning and Dual-Horizon Navigation Prediction
Embodied navigation for long-horizon tasks, guided by complex natural language instructions, remains a formidable challenge in artificial intelligence. Existing agents often struggle with robust long-term planning about unseen environments, leading to high failure rates. To address these limitations, we introduce NavForesee, a novel Vision-Language Model (VLM) that unifies high-level language planning and predictive world model imagination within a single, unified framework. Our approach empowers a single VLM to concurrently perform planning and predictive foresight. Conditioned on the full instruction and historical observations, the model is trained to understand the navigation instructions by decomposing the task, tracking its progress, and formulating the subsequent sub-goal. Simultaneously, it functions as a generative world model, providing crucial foresight by predicting short-term environmental dynamics and long-term navigation milestones. The VLM's structured plan guides its targeted prediction, while the imagined future provides rich context to inform the navigation actions, creating a powerful internal feedback loop of perception-planning/prediction-action. We demonstrate through extensive experiments on the R2R-CE and RxR-CE benchmark that NavForesee achieves highly competitive performance in complex scenarios. Our work highlights the immense potential of fusing explicit language planning with implicit spatiotemporal prediction, paving the way for more intelligent and capable embodied agents.
☆ $\mathbf{M^3A}$ Policy: Mutable Material Manipulation Augmentation Policy through Photometric Re-rendering
Material generalization is essential for real-world robotic manipulation, where robots must interact with objects exhibiting diverse visual and physical properties. This challenge is particularly pronounced for objects made of glass, metal, or other materials whose transparent or reflective surfaces introduce severe out-of-distribution variations. Existing approaches either rely on simulated materials in simulators and perform sim-to-real transfer, which is hindered by substantial visual domain gaps, or depend on collecting extensive real-world demonstrations, which is costly, time-consuming, and still insufficient to cover various materials. To overcome these limitations, we resort to computational photography and introduce Mutable Material Manipulation Augmentation (M$^3$A), a unified framework that leverages the physical characteristics of materials as captured by light transport for photometric re-rendering. The core idea is simple yet powerful: given a single real-world demonstration, we photometrically re-render the scene to generate a diverse set of highly realistic demonstrations with different material properties. This augmentation effectively decouples task-specific manipulation skills from surface appearance, enabling policies to generalize across materials without additional data collection. To systematically evaluate this capability, we construct the first comprehensive multi-material manipulation benchmark spanning both simulation and real-world environments. Extensive experiments show that the M$^3$A policy significantly enhances cross-material generalization, improving the average success rate across three real-world tasks by 58.03\%, and demonstrating robust performance on previously unseen materials.
comment: under submission
☆ Accelerating Probabilistic Response-Time Analysis: Revised Critical Instant and Optimized Convolution
Accurate estimation of the Worst-Case Deadline Failure Probability (WCDFP) has attracted growing attention as a means to provide safety assurances in complex systems such as robotic platforms and autonomous vehicles. WCDFP quantifies the likelihood of deadline misses under the most pessimistic operating conditions, and safe estimation is essential for dependable real-time applications. However, achieving high accuracy in WCDFP estimation often incurs significant computational cost. Recent studies have revealed that the classical assumption of the critical instant, the activation pattern traditionally considered to trigger the worst-case behavior, can lead to underestimation of WCDFP in probabilistic settings. This observation motivates the use of a revised critical instant formulation that more faithfully captures the true worst-case scenario. This paper investigates convolution-based methods for WCDFP estimation under this revised setting and proposes an optimization technique that accelerates convolution by improving the merge order. Extensive experiments with diverse execution-time distributions demonstrate that the proposed optimized Aggregate Convolution reduces computation time by up to an order of magnitude compared to Sequential Convolution, while retaining accurate and safe-sided WCDFP estimates. These results highlight the potential of the approach to provide both efficiency and reliability in probabilistic timing analysis for safety-critical real-time applications.
comment: 8 pages, 5 figures. Proceedings of APRIS2025
☆ Modality-Augmented Fine-Tuning of Foundation Robot Policies for Cross-Embodiment Manipulation on GR1 and G1
This paper presents a modality-augmented fine-tuning framework designed to adapt foundation robot policies to diverse humanoid embodiments. We validate our approach across two distinct settings: (i) the GR1 embodiment, utilizing public datasets where we introduce post-processed modalities, including binary contact signals and ZoeDepth-generated metric depth; and (ii) the Unitree G1 embodiment, for which we contribute a novel multi-modal dataset incorporating cuRobo motion planning, inverse kinematics, and ground-truth contact-force measurements. Our experiments demonstrate that modality augmentation consistently enhances policy performance across different embodiments. Specifically, for the GR1, integrating contact-state cues and RGB-D fusion improves online success rates from 51% to 63%. Furthermore, in the G1 "Pick Apple to Bowl" task, our contact-augmented model achieves a success rate of 94%, significantly outperforming the 48% achieved by standard fine-tuning and the 0% baseline of zero-shot transfer. These results highlight that lightweight post-processing effectively strengthens policies for GR1, while high-quality multi-modal data is crucial for reliable transfer to the Unitree G1. Consequently, this work establishes a unified, data-centric pathway for extending foundation robot policies through targeted modality design and multi-modal fine-tuning.
comment: 8 pages, 10 figures
☆ Discovering Self-Protective Falling Policy for Humanoid Robot via Deep Reinforcement Learning
Humanoid robots have received significant research interests and advancements in recent years. Despite many successes, due to their morphology, dynamics and limitation of control policy, humanoid robots are prone to fall as compared to other embodiments like quadruped or wheeled robots. And its large weight, tall Center of Mass, high Degree-of-Freedom would cause serious hardware damages when falling uncontrolled, to both itself and surrounding objects. Existing researches in this field mostly focus on using control based methods that struggle to cater diverse falling scenarios and may introduce unsuitable human prior. On the other hand, large-scale Deep Reinforcement Learning and Curriculum Learning could be employed to incentivize humanoid agent discovering falling protection policy that fits its own nature and property. In this work, with carefully designed reward functions and domain diversification curriculum, we successfully train humanoid agent to explore falling protection behaviors and discover that by forming a `triangle' structure, the falling damages could be significantly reduced with its rigid-material body. With comprehensive metrics and experiments, we quantify its performance with comparison to other methods, visualize its falling behaviors and successfully transfer it to real world platform.
☆ Visibility-aware Cooperative Aerial Tracking with Decentralized LiDAR-based Swarms
Longji Yin, Yunfan Ren, Fangcheng Zhu, Liuyu Shi, Fanze Kong, Benxu Tang, Wenyi Liu, Ximin Lyu, Fu Zhang
Autonomous aerial tracking with drones offers vast potential for surveillance, cinematography, and industrial inspection applications. While single-drone tracking systems have been extensively studied, swarm-based target tracking remains underexplored, despite its unique advantages of distributed perception, fault-tolerant redundancy, and multidirectional target coverage. To bridge this gap, we propose a novel decentralized LiDAR-based swarm tracking framework that enables visibility-aware, cooperative target tracking in complex environments, while fully harnessing the unique capabilities of swarm systems. To address visibility, we introduce a novel Spherical Signed Distance Field (SSDF)-based metric for 3-D environmental occlusion representation, coupled with an efficient algorithm that enables real-time onboard SSDF updating. A general Field-of-View (FOV) alignment cost supporting heterogeneous LiDAR configurations is proposed for consistent target observation. Swarm coordination is enhanced through cooperative costs that enforce inter-robot safe clearance, prevent mutual occlusions, and notably facilitate 3-D multidirectional target encirclement via a novel electrostatic-potential-inspired distribution metric. These innovations are integrated into a hierarchical planner, combining a kinodynamic front-end searcher with a spatiotemporal $SE(3)$ back-end optimizer to generate collision-free, visibility-optimized trajectories.Deployed on heterogeneous LiDAR swarms, our fully decentralized implementation features collaborative perception, distributed planning, and dynamic swarm reconfigurability. Validated through rigorous real-world experiments in cluttered outdoor environments, the proposed system demonstrates robust cooperative tracking of agile targets (drones, humans) while achieving superior visibility maintenance.
☆ COMET: A Dual Swashplate Autonomous Coaxial Bi-copter AAV with High-Maneuverability and Long-Endurance
Coaxial bi-copter autonomous aerial vehicles (AAVs) have garnered attention due to their potential for improved rotor system efficiency and compact form factor. However, balancing efficiency, maneuverability, and compactness in coaxial bi-copter systems remains a key design challenge, limiting their practical deployment. This letter introduces COMET, a coaxial bi-copter AAV platform featuring a dual swashplate mechanism. The coaxial bi-copter system's efficiency and compactness are optimized through bench tests, and the whole prototype's efficiency and robustness under varying payload conditions are verified through flight endurance experiments. The maneuverability performance of the system is evaluated in comprehensive trajectory tracking tests. The results indicate that the dual swashplate configuration enhances tracking performance and improves flight efficiency compared to the single swashplate alternative. Successful autonomous flight trials across various scenarios verify COMET's potential for real-world applications.
comment: 8 pages, 8 figures, accepted at IEEE RA-L
☆ How do trout regulate patterns of muscle contraction to optimize propulsive efficiency during steady swimming
Understanding efficient fish locomotion offers insights for biomechanics, fluid dynamics, and engineering. Traditional studies often miss the link between neuromuscular control and whole-body movement. To explore energy transfer in carangiform swimming, we created a bio-inspired digital trout. This model combined multibody dynamics, Hill-type muscle modeling, and a high-fidelity fluid-structure interaction algorithm, accurately replicating a real trout's form and properties. Using deep reinforcement learning, the trout's neural system achieved hierarchical spatiotemporal control of muscle activation. We systematically examined how activation strategies affect speed and energy use. Results show that axial myomere coupling-with activation spanning over 0.5 body lengths-is crucial for stable body wave propagation. Moderate muscle contraction duration ([0.1,0.3] of a tail-beat cycle) lets the body and fluid act as a passive damping system, cutting energy use. Additionally, the activation phase lag of myomeres shapes the body wave; if too large, it causes antagonistic contractions that hinder thrust. These findings advance bio-inspired locomotion understanding and aid energy-efficient underwater system design.
☆ RoboLoc: A Benchmark Dataset for Point Place Recognition and Localization in Indoor-Outdoor Integrated Environments
Robust place recognition is essential for reliable localization in robotics, particularly in complex environments with fre- quent indoor-outdoor transitions. However, existing LiDAR-based datasets often focus on outdoor scenarios and lack seamless domain shifts. In this paper, we propose RoboLoc, a benchmark dataset designed for GPS-free place recognition in indoor-outdoor environments with floor transitions. RoboLoc features real-world robot trajectories, diverse elevation profiles, and transitions between structured indoor and unstructured outdoor domains. We benchmark a variety of state-of-the-art models, point-based, voxel-based, and BEV-based architectures, highlighting their generalizability domain shifts. RoboLoc provides a realistic testbed for developing multi-domain localization systems in robotics and autonomous navigation
☆ Real-World Reinforcement Learning of Active Perception Behaviors NeurIPS 2025
Edward S. Hu, Jie Wang, Xingfang Yuan, Fiona Luo, Muyao Li, Gaspard Lambrechts, Oleh Rybkin, Dinesh Jayaraman
A robot's instantaneous sensory observations do not always reveal task-relevant state information. Under such partial observability, optimal behavior typically involves explicitly acting to gain the missing information. Today's standard robot learning techniques struggle to produce such active perception behaviors. We propose a simple real-world robot learning recipe to efficiently train active perception policies. Our approach, asymmetric advantage weighted regression (AAWR), exploits access to "privileged" extra sensors at training time. The privileged sensors enable training high-quality privileged value functions that aid in estimating the advantage of the target policy. Bootstrapping from a small number of potentially suboptimal demonstrations and an easy-to-obtain coarse policy initialization, AAWR quickly acquires active perception behaviors and boosts task performance. In evaluations on 8 manipulation tasks on 3 robots spanning varying degrees of partial observability, AAWR synthesizes reliable active perception behaviors that outperform all prior approaches. When initialized with a "generalist" robot policy that struggles with active perception tasks, AAWR efficiently generates information-gathering behaviors that allow it to operate under severe partial observability for manipulation tasks. Website: https://penn-pal-lab.github.io/aawr/
comment: NeurIPS 2025 camera ready
☆ Real-Time On-the-Go Annotation Framework Using YOLO for Automated Dataset Generation CEC 2025
Efficient and accurate annotation of datasets remains a significant challenge for deploying object detection models such as You Only Look Once (YOLO) in real-world applications, particularly in agriculture where rapid decision-making is critical. Traditional annotation techniques are labor-intensive, requiring extensive manual labeling post data collection. This paper presents a novel real-time annotation approach leveraging YOLO models deployed on edge devices, enabling immediate labeling during image capture. To comprehensively evaluate the efficiency and accuracy of our proposed system, we conducted an extensive comparative analysis using three prominent YOLO architectures (YOLOv5, YOLOv8, YOLOv12) under various configurations: single-class versus multi-class annotation and pretrained versus scratch-based training. Our analysis includes detailed statistical tests and learning dynamics, demonstrating significant advantages of pretrained and single-class configurations in terms of model convergence, performance, and robustness. Results strongly validate the feasibility and effectiveness of our real-time annotation framework, highlighting its capability to drastically reduce dataset preparation time while maintaining high annotation quality.
comment: Copyright 2025 IEEE. This is the author's version of the work that has been accepted for publication in Proceedings of the 5. Interdisciplinary Conference on Electrics and Computer (INTCEC 2025) 15-16 September 2025, Chicago-USA. The final version of record is available at: https://doi.org/10.1109/INTCEC65580.2025.11256048
♻ ☆ Securing the Skies: A Comprehensive Survey on Anti-UAV Methods, Benchmarking, and Future Directions CVPR
Yifei Dong, Fengyi Wu, Sanjian Zhang, Guangyu Chen, Yuzhi Hu, Masumi Yano, Jingdong Sun, Siyu Huang, Feng Liu, Qi Dai, Zhi-Qi Cheng
Unmanned Aerial Vehicles (UAVs) are indispensable for infrastructure inspection, surveillance, and related tasks, yet they also introduce critical security challenges. This survey provides a wide-ranging examination of the anti-UAV domain, centering on three core objectives-classification, detection, and tracking-while detailing emerging methodologies such as diffusion-based data synthesis, multi-modal fusion, vision-language modeling, self-supervised learning, and reinforcement learning. We systematically evaluate state-of-the-art solutions across both single-modality and multi-sensor pipelines (spanning RGB, infrared, audio, radar, and RF) and discuss large-scale as well as adversarially oriented benchmarks. Our analysis reveals persistent gaps in real-time performance, stealth detection, and swarm-based scenarios, underscoring pressing needs for robust, adaptive anti-UAV systems. By highlighting open research directions, we aim to foster innovation and guide the development of next-generation defense strategies in an era marked by the extensive use of UAVs.
comment: Best Paper, Accepted at CVPR Workshop Anti-UAV 2025. 16 pages
♻ ☆ PRIMT: Preference-based Reinforcement Learning with Multimodal Feedback and Trajectory Synthesis from Foundation Models
Ruiqi Wang, Dezhong Zhao, Ziqin Yuan, Tianyu Shao, Guohua Chen, Dominic Kao, Sungeun Hong, Byung-Cheol Min
Preference-based reinforcement learning (PbRL) has emerged as a promising paradigm for teaching robots complex behaviors without reward engineering. However, its effectiveness is often limited by two critical challenges: the reliance on extensive human input and the inherent difficulties in resolving query ambiguity and credit assignment during reward learning. In this paper, we introduce PRIMT, a PbRL framework designed to overcome these challenges by leveraging foundation models (FMs) for multimodal synthetic feedback and trajectory synthesis. Unlike prior approaches that rely on single-modality FM evaluations, PRIMT employs a hierarchical neuro-symbolic fusion strategy, integrating the complementary strengths of large language models and vision-language models in evaluating robot behaviors for more reliable and comprehensive feedback. PRIMT also incorporates foresight trajectory generation, which reduces early-stage query ambiguity by warm-starting the trajectory buffer with bootstrapped samples, and hindsight trajectory augmentation, which enables counterfactual reasoning with a causal auxiliary loss to improve credit assignment. We evaluate PRIMT on 2 locomotion and 6 manipulation tasks on various benchmarks, demonstrating superior performance over FM-based and scripted baselines.
♻ ☆ Multimodal "Puppeteer": Exploring Robot Teleoperation Via Virtual Counterpart with LLM-Driven Voice and Gesture Interaction in Augmented Reality
The integration of robotics and augmented reality (AR) offers promising opportunities to enhance human-robot interaction (HRI) by making teleoperation more transparent, spatially grounded, and intuitive. We present a head-mounted AR "puppeteer" framework in which users control a physical robot via interacting with its virtual counterpart robot using large language model (LLM)-driven voice commands and hand-gesture interaction on the Meta Quest 3. In a within-subject user study with 42 participants performing an AR-based robotic pick-and-place pattern-matching task, we compare two interaction conditions: gesture-only (GO) and combined voice+gesture (VG). Our results show that GO currently provides more reliable and efficient control for this time-critical task, while VG introduces additional flexibility but also latency and recognition issues that can increase workload. We further explore how prior robotics experience shapes participants' perceptions of each modality. Based on these findings, we distill a set of evidence-based design guidelines for AR puppeteer metaphoric robot teleoperation, implicating multimodality as an adaptive strategy that must balance efficiency, robustness, and user expertise rather than assuming that additional modalities are universally beneficial. Our work contributes empirical insights into how multimodal (voice+gesture) interaction influences task efficiency, usability, and user experience in AR-based HRI.
comment: This work is under peer review
♻ ☆ How to Adapt Control Barrier Functions? A Learning-Based Approach with Applications to a VTOL Quadplane
In this paper, we present a novel theoretical framework for online adaptation of Control Barrier Function (CBF) parameters, i.e., of the class K functions included in the CBF condition, under input constraints. We introduce the concept of locally validated CBF parameters, which are adapted online to guarantee finite-horizon safety, based on conditions derived from Nagumo's theorem and tangent cone analysis. To identify these parameters online, we integrate a learning-based approach with an uncertainty-aware verification process that account for both epistemic and aleatoric uncertainties inherent in neural network predictions. Our method is demonstrated on a VTOL quadplane model during challenging transition and landing maneuvers, showcasing enhanced performance while maintaining safety.
comment: 2025 IEEE Conference on Decision and Control (CDC). Project page: https://www.taekyung.me/how-to-adapt-cbf
♻ ☆ High-Speed Event Vision-Based Tactile Roller Sensor for Large Surface Measurements
Akram Khairi, Hussain Sajwani, Abdallah Mohammad Alkilany, Laith AbuAssi, Mohamad Halwani, Islam Mohamed Zaid, Ahmed Awadalla, Dewald Swart, Abdulla Ayyad, Yahya Zweiri
Inspecting large-scale industrial surfaces like aircraft fuselages for quality control requires capturing their precise 3D surface geometry at high resolution. Vision-based tactile sensors (VBTSs) offer high local resolution but require slow 'press-and-lift' measurements stitched for large areas. Approaches with sliding or roller/belt VBTS designs provide measurements continuity. However, they face significant challenges respectively: sliding struggles with friction/wear and both approaches are speed-limited by conventional camera frame rates and motion blur, making large-area scanning time consuming. Thus, a rapid, continuous, high-resolution method is needed. We introduce a novel tactile sensor integrating a neuromorphic camera in a rolling mechanism to achieve this. Leveraging its high temporal resolution and robustness to motion blur, our system uses a modified event-based multi-view stereo approach for 3D reconstruction. We demonstrate state-of-the-art scanning speeds up to 0.5 m/s, achieving Mean Absolute Error below 100 microns -- 11 times faster than prior continuous tactile sensing methods. A multi-reference Bayesian fusion strategy enhances accuracy (reducing MAE by 25.2\% compared to EMVS) and mitigates curvature errors. We also validate high-speed feature recognition via Braille reading 2.6 times faster than previous approaches.
comment: Under Review - Project Page: https://akramekhairi.github.io/TheySeeMeRolling/. 14 pages, 11 figures
♻ ☆ A Unified Framework for Probabilistic Dynamic-, Trajectory- and Vision-based Virtual Fixtures
Maximilian Mühlbauer, Bernhard Weber, Sylvain Calinon, Freek Stulp, Alin Albu-Schäffer, João Silvério
Probabilistic Virtual Fixtures (VFs) enable the adaptive selection of the most suitable haptic feedback for each phase of a task, based on learned or perceived uncertainty. While keeping the human in the loop remains essential, for instance, to ensure high precision, partial automation of certain task phases is critical for productivity. We present a unified framework for probabilistic VFs that seamlessly switches between manual fixtures, semi-automated fixtures (with the human handling precise tasks), and full autonomy. We introduce a novel probabilistic Dynamical System-based VF for coarse guidance, enabling the robot to autonomously complete certain task phases while keeping the human operator in the loop. For tasks requiring precise guidance, we extend probabilistic position-based trajectory fixtures with automation allowing for seamless human interaction as well as geometry-awareness and optimal impedance gains. For manual tasks requiring very precise guidance, we also extend visual servoing fixtures with the same geometry-awareness and impedance behavior. We validate our approach experimentally on different robots, showcasing multiple operation modes and the ease of programming fixtures.
comment: for the supplementary video, see https://www.youtube.com/watch?v=vUXzcpMbMnY
♻ ☆ VITA: Vision-to-Action Flow Matching Policy
Dechen Gao, Boqi Zhao, Andrew Lee, Ian Chuang, Hanchu Zhou, Hang Wang, Zhe Zhao, Junshan Zhang, Iman Soltani
Conventional flow matching and diffusion-based policies sample through iterative denoising from standard noise distributions (e.g., Gaussian), and require conditioning modules to repeatedly incorporate visual information during the generative process, incurring substantial time and memory overhead. To reduce the complexity, we develop VITA(VIsion-To-Action policy), a noise-free and conditioning-free flow matching policy learning framework that directly flows from visual representations to latent actions. Since the source of the flow is visually grounded, VITA eliminates the need of visual conditioning during generation. As expected, bridging vision and action is challenging, because actions are lower-dimensional, less structured, and sparser than visual representations; moreover, flow matching requires the source and target to have the same dimensionality. To overcome this, we introduce an action autoencoder that maps raw actions into a structured latent space aligned with visual latents, trained jointly with flow matching. To further prevent latent space collapse, we propose flow latent decoding, which anchors the latent generation process by backpropagating the action reconstruction loss through the flow matching ODE (ordinary differential equation) solving steps. We evaluate VITA on 9 simulation and 5 real-world tasks from ALOHA and Robomimic. VITA achieves 1.5x-2x faster inference compared to conventional methods with conditioning modules, while outperforming or matching state-of-the-art policies. Codes, datasets, and demos are available at our project page: https://ucd-dare.github.io/VITA/.
comment: Project page: https://ucd-dare.github.io/VITA/ Code: https://github.com/ucd-dare/VITA
♻ ☆ RobustVLA: Robustness-Aware Reinforcement Post-Training for Vision-Language-Action Models
Vision-Language-Action (VLA) models have recently emerged as powerful general-purpose policies for robotic manipulation, benefiting from large-scale multi-modal pre-training. However, they often fail to generalize reliably in out-of-distribution deployments, where unavoidable disturbances such as observation noise, sensor errors, or actuation perturbations become prevalent. While recent Reinforcement Learning (RL)-based post-training provides a practical means to adapt pre-trained VLA models, existing methods mainly emphasize reward maximization and overlook robustness to environmental uncertainty. In this work, we introduce RobustVLA, a lightweight online RL post-training method designed to explicitly enhance the resilience of VLA models. Through a systematic robustness analysis, we identify two key regularizations: Jacobian regularization, which mitigates sensitivity to observation noise, and smoothness regularization, which stabilizes policies under action perturbations. Extensive experiments across diverse robotic environments demonstrate that RobustVLA significantly outperforms prior state-of-the-art methods in robustness and reliability. Our results highlight the importance of principled robustness-aware RL post-training as a key step toward improving the reliability and robustness of VLA models.
♻ ☆ Compliant Residual DAgger: Improving Real-World Contact-Rich Manipulation with Human Corrections
We address key challenges in Dataset Aggregation (DAgger) for real-world contact-rich manipulation: how to collect informative human correction data and how to effectively update policies with this new data. We introduce Compliant Residual DAgger (CR-DAgger), which contains two novel components: 1) a Compliant Intervention Interface that leverages compliance control, allowing humans to provide gentle, accurate delta action corrections without interrupting the ongoing robot policy execution; and 2) a Compliant Residual Policy formulation that learns from human corrections while incorporating force feedback and force control. Our system significantly enhances performance on precise contact-rich manipulation tasks using minimal correction data, improving base policy success rates by over 50\% on two challenging tasks (book flipping and belt assembly) while outperforming both retraining-from-scratch and finetuning approaches. Through extensive real-world experiments, we provide practical guidance for implementing effective DAgger in real-world robot learning tasks. Result videos are available at: https://compliant-residual-dagger.github.io/
♻ ☆ 3EED: Ground Everything Everywhere in 3D NeurIPS 2025
Rong Li, Yuhao Dong, Tianshuai Hu, Ao Liang, Youquan Liu, Dongyue Lu, Liang Pan, Lingdong Kong, Junwei Liang, Ziwei Liu
Visual grounding in 3D is the key for embodied agents to localize language-referred objects in open-world environments. However, existing benchmarks are limited to indoor focus, single-platform constraints, and small scale. We introduce 3EED, a multi-platform, multi-modal 3D grounding benchmark featuring RGB and LiDAR data from vehicle, drone, and quadruped platforms. We provide over 128,000 objects and 22,000 validated referring expressions across diverse outdoor scenes -- 10x larger than existing datasets. We develop a scalable annotation pipeline combining vision-language model prompting with human verification to ensure high-quality spatial grounding. To support cross-platform learning, we propose platform-aware normalization and cross-modal alignment techniques, and establish benchmark protocols for in-domain and cross-platform evaluations. Our findings reveal significant performance gaps, highlighting the challenges and opportunities of generalizable 3D grounding. The 3EED dataset and benchmark toolkit are released to advance future research in language-driven 3D embodied perception.
comment: NeurIPS 2025 DB Track; 38 pages, 17 figures, 10 tables; Project Page at https://project-3eed.github.io/
♻ ☆ AerialMind: Towards Referring Multi-Object Tracking in UAV Scenarios AAAI 2026
Chenglizhao Chen, Shaofeng Liang, Runwei Guan, Xiaolou Sun, Haocheng Zhao, Haiyun Jiang, Tao Huang, Henghui Ding, Qing-Long Han
Referring Multi-Object Tracking (RMOT) aims to achieve precise object detection and tracking through natural language instructions, representing a fundamental capability for intelligent robotic systems. However, current RMOT research remains mostly confined to ground-level scenarios, which constrains their ability to capture broad-scale scene contexts and perform comprehensive tracking and path planning. In contrast, Unmanned Aerial Vehicles (UAVs) leverage their expansive aerial perspectives and superior maneuverability to enable wide-area surveillance. Moreover, UAVs have emerged as critical platforms for Embodied Intelligence, which has given rise to an unprecedented demand for intelligent aerial systems capable of natural language interaction. To this end, we introduce AerialMind, the first large-scale RMOT benchmark in UAV scenarios, which aims to bridge this research gap. To facilitate its construction, we develop an innovative semi-automated collaborative agent-based labeling assistant (COALA) framework that significantly reduces labor costs while maintaining annotation quality. Furthermore, we propose HawkEyeTrack (HETrack), a novel method that collaboratively enhances vision-language representation learning and improves the perception of UAV scenarios. Comprehensive experiments validated the challenging nature of our dataset and the effectiveness of our method.
comment: AAAI 2026
♻ ☆ UniFucGrasp: Human-Hand-Inspired Unified Functional Grasp Annotation Strategy and Dataset for Diverse Dexterous Hands
Haoran Lin, Wenrui Chen, Xianchi Chen, Fan Yang, Qiang Diao, Wenxin Xie, Sijie Wu, Kailun Yang, Maojun Li, Yaonan Wang
Dexterous grasp datasets are vital for embodied intelligence, but mostly emphasize grasp stability, ignoring functional grasps needed for tasks like opening bottle caps or holding cup handles. Most rely on bulky, costly, and hard-to-control high-DOF Shadow Hands. Inspired by the human hand's underactuated mechanism, we establish UniFucGrasp, a universal functional grasp annotation strategy and dataset for multiple dexterous hand types. Based on biomimicry, it maps natural human motions to diverse hand structures and uses geometry-based force closure to ensure functional, stable, human-like grasps. This method supports low-cost, efficient collection of diverse, high-quality functional grasps. Finally, we establish the first multi-hand functional grasp dataset and provide a synthesis model to validate its effectiveness. Experiments on the UFG dataset, IsaacSim, and complex robotic tasks show that our method improves functional manipulation accuracy and grasp stability, demonstrates improved adaptability across multiple robotic hands, helping to alleviate annotation cost and generalization challenges in dexterous grasping. The project page is at https://haochen611.github.io/UFG.
comment: Accepted to IEEE Robotics and Automation Letters (RA-L). The project page is at https://haochen611.github.io/UFG
♻ ☆ HybridWorldSim: A Scalable and Controllable High-fidelity Simulator for Autonomous Driving
Qiang Li, Yingwenqi Jiang, Tuoxi Li, Duyu Chen, Xiang Feng, Yucheng Ao, Shangyue Liu, Xingchen Yu, Youcheng Cai, Yumeng Liu, Yuexin Ma, Xin Hu, Li Liu, Yu Zhang, Linkun Xu, Bingtao Gao, Xueyuan Wang, Shuchang Zhou, Xianming Liu, Ligang Liu
Realistic and controllable simulation is critical for advancing end-to-end autonomous driving, yet existing approaches often struggle to support novel view synthesis under large viewpoint changes or to ensure geometric consistency. We introduce HybridWorldSim, a hybrid simulation framework that integrates multi-traversal neural reconstruction for static backgrounds with generative modeling for dynamic agents. This unified design addresses key limitations of previous methods, enabling the creation of diverse and high-fidelity driving scenarios with reliable visual and spatial consistency. To facilitate robust benchmarking, we further release a new multi-traversal dataset MIRROR that captures a wide range of routes and environmental conditions across different cities. Extensive experiments demonstrate that HybridWorldSim surpasses previous state-of-the-art methods, providing a practical and scalable solution for high-fidelity simulation and a valuable resource for research and development in autonomous driving.
♻ ☆ Curvature-Constrained Vector Field for Motion Planning of Nonholonomic Robots
Vector fields are advantageous in handling nonholonomic motion planning as they provide reference orientation for robots. However, additionally incorporating curvature constraints becomes challenging, due to the interconnection between the design of the curvature-bounded vector field and the tracking controller under underactuation. In this paper, we present a novel framework to co-develop the vector field and the control laws, guiding the nonholonomic robot to the target configuration with curvature-bounded trajectory. First, we formulate the problem by introducing the target positive limit set, which allows the robot to converge to or pass through the target configuration, depending on different dynamics and tasks. Next, we construct a curvature-constrained vector field (CVF) via blending and distributing basic flow fields in workspace and propose the saturated control laws with a dynamic gain, under which the tracking error's magnitude decreases even when saturation occurs. Under the control laws, kinematically constrained nonholonomic robots are guaranteed to track the reference CVF and converge to the target positive limit set with bounded trajectory curvature. Numerical simulations show that the proposed CVF method outperforms other vector-field-based algorithms. Experiments on Ackermann UGVs and semi-physical fixed-wing UAVs demonstrate that the method can be effectively implemented in real-world scenarios.
comment: IEEE T-RO accepted, 20 pages, 22 figures
♻ ☆ A $1000\times$ Faster LLM-enhanced Algorithm For Path Planning in Large-scale Grid Maps
Path planning in grid maps, arising from various applications, has garnered significant attention. Existing methods, such as A*, Dijkstra, and their variants, work well for small-scale maps but fail to address large-scale ones due to high search time and memory consumption. Recently, Large Language Models (LLMs) have shown remarkable performance in path planning but still suffer from spatial illusion and poor planning performance. Among all the works, LLM-A* \cite{meng2024llm} leverages LLM to generate a series of waypoints and then uses A* to plan the paths between the neighboring waypoints. In this way, the complete path is constructed. However, LLM-A* still suffers from high computational time for large-scale maps. To fill this gap, we conducted a deep investigation into LLM-A* and found its bottleneck, resulting in limited performance. Accordingly, we design an innovative LLM-enhanced algorithm, abbr. as iLLM-A*. iLLM-A* includes 3 carefully designed mechanisms, including the optimization of A*, an incremental learning method for LLM to generate high-quality waypoints, and the selection of the appropriate waypoints for A* for path planning. Finally, a comprehensive evaluation on various grid maps shows that, compared with LLM-A*, iLLM-A* \textbf{1) achieves more than $1000\times$ speedup on average, and up to $2349.5\times$ speedup in the extreme case, 2) saves up to $58.6\%$ of the memory cost, 3) achieves both obviously shorter path length and lower path length standard deviation.}
♻ ☆ AutoDrive-R$^2$: Incentivizing Reasoning and Self-Reflection Capacity for VLA Model in Autonomous Driving
Zhenlong Yuan, Chengxuan Qian, Jing Tang, Rui Chen, Zijian Song, Lei Sun, Xiangxiang Chu, Yujun Cai, Dapeng Zhang, Shuo Li
Vision-Language-Action (VLA) models in autonomous driving systems have recently demonstrated transformative potential by integrating multimodal perception with decision-making capabilities. However, the interpretability and coherence of the decision process and the plausibility of action sequences remain largely underexplored. To address these issues, we propose AutoDrive-R$^2$, a novel VLA framework that enhances both reasoning and self-reflection capabilities of autonomous driving systems through chain-of-thought (CoT) processing and reinforcement learning (RL). Specifically, we first propose an innovative CoT dataset named nuScenesR$^2$-6K for supervised fine-tuning, which effectively builds cognitive bridges between input information and output trajectories through a four-step logical chain with self-reflection for validation. Moreover, to maximize both reasoning and self-reflection during the RL stage, we further employ the Group Relative Policy Optimization (GRPO) algorithm within a physics-grounded reward framework that incorporates spatial alignment, vehicle dynamic, and temporal smoothness criteria to ensure reliable and realistic trajectory planning. Extensive evaluation results across both nuScenes and Waymo datasets demonstrates the state-of-the-art performance and robust generalization capacity of our proposed method.